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SUMMARY

We introduce APEX-seq, a method for RNA
sequencing based on direct proximity labeling of
RNA using the peroxidase enzyme APEX2. APEX-
seq in nine distinct subcellular locales produced a
nanometer-resolution spatial map of the human tran-
scriptome as a resource, revealing extensive pat-
terns of localization for diverse RNA classes and
transcript isoforms.We uncover a radial organization
of the nuclear transcriptome, which is gated at the in-
ner surface of the nuclear pore for cytoplasmic
export of processed transcripts. We identify two
distinct pathways of messenger RNA localization to
mitochondria, each associated with specific sets of
transcripts for building complementarymacromolec-
ular machines within the organelle. APEX-seq
should be widely applicable to many systems,
enabling comprehensive investigations of the spatial
transcriptome.

INTRODUCTION

The subcellular localization of RNA is intimately tied to its func-
tion (Buxbaumet al., 2015). Asymmetrically distributed RNAs un-
derlie organismal development, local protein translation, and the
3D organization of chromatin. Where an RNA is located within
the cell likely determines whether it will be stored, processed,
translated (Berkovits and Mayr, 2015), or degraded (Fasken
and Corbett, 2009).
While many methods have been developed to study RNA

localization (Weil et al., 2010), only a few have been applied on
a transcriptome-wide scale. The most classic approach is
biochemical fractionation to enrich specific organelles, followed
by RNA sequencing (‘‘fractionation-seq’’). However, a major lim-

itation of fractionation-seq is that it cannot be applied to organ-
elles that are impossible to purify, such as the nuclear lamina and
outer mitochondrial membrane (OMM). Even for organelles that
can be enriched by centrifugation, such asmitochondria, current
protocols fail to remove contaminants (Sadowski et al., 2008).
RNA localization can also be directly visualized bymicroscopy

(Bertrand et al., 1998; Femino et al., 1998), and techniques have
recently been pioneered for imaging thousands of cellular RNAs
at once using barcoded oligonucleotides (Chen et al., 2015b;
Shah et al., 2016). The drawbacks of these fluorescence in situ
hybridization (FISH)-based approaches, however, are the need
for designed probe sets targeting RNAs of interest; the require-
ment for cell fixation and permeabilization, which can relocalize
cellular components (Fox et al., 1985; Schnell et al., 2012); the
difficulty of assigning RNAs to specific cellular landmarks due
to spatial resolution limits; and the limited information content
compared to RNA sequencing. Finally, these transcriptome-
wide imaging methods are technically challenging and require
specialized instrumentation not available to most.
An adaptation of ribosome profiling (Ingolia et al., 2009) has

enabled this technique to profile actively translated mRNAs in
specific cellular locales. The two demonstrations—on the endo-
plasmic reticulum membrane (ERM) in yeast and mammalian
cells (Jan et al., 2014), and on the OMM in yeast (Williams
et al., 2014)—showed high spatial specificity and compatibility
with living cells. However, the methodology cannot detect non-
coding RNAs or non-translated mRNAs. Proximity-specific ribo-
some profiling is also not yet a fully generalizable method, as the
requirement for biotin starvation during cell culture is prohibi-
tively toxic to many cell types.
Hence, there remains a need for new methodology that can

map the spatial localization of thousands of endogenous RNAs
at once in living cells. The method should be applicable to any
subcellular region and capture full sequence details of any
RNA type, enabling comparisons across RNA variants and iso-
forms. Here, we develop the ‘‘APEX-seq’’ methodology in
an effort to provide these capabilities. We characterize the
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Figure 1. Development of APEX-Seq Methodology
(A) APEX2-mediated proximity biotinylation of endogenous RNAs. APEX2 peroxidase is genetically targeted to the cellular region of interest. Addition of BP

(red B = biotin) and H2O2 to live cells for 1 min results in biotinylation of endogenous proteins and RNA within a few nanometers of APEX2. Biotinylated RNAs are

separated using streptavidin-coated beads, poly(A)-selected, and analyzed by RNA sequencing (RNA-seq).

(legend continued on next page)
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APEX-seq approach and then apply it to nine subcellular loca-
tions, generating a high-resolution atlas of endogenous RNA
localization in living human HEK293T cells. Our data reveal
correlations between localization of mRNAs and the protein
products they encode, as well as patterns of RNA localization
and underlying genome architecture. An analysis of mRNAs at
the OMM suggests distinct mechanisms for RNA targeting that
correlate with the sequence and function of the encoded mito-
chondrial proteins. These examples illustrate the versatility of
APEX-seq and its ability to nominate or test novel biological
hypotheses.

RESULTS

APEX-Catalyzed Labeling of RNA
To develop the methodology, we drew from previous work in our
laboratory using enzymes to map spatial proteomes (Rhee et al.,
2013). APEX2 (Lam et al., 2015) is an evolved mutant of soybean
ascorbate peroxidase that catalyzes the one-electron oxidation
of biotin-phenol (BP), a membrane-permeable small molecule.
The resulting BP radical is short-lived (half-life <1ms) (Mortensen
and Skibsted, 1997; Wishart and Rao, 2010) and covalently con-
jugates onto protein side chains. Hence, APEX2 catalyzes the
promiscuous biotin tagging of endogenous proteins within a
few nanometers of its active site in living cells. The high spatial
specificity of this approach has enabled APEX mapping of
numerous organelle proteomes as well as protein interaction
networks (Han et al., 2018).
We previously combined APEX proteomic tagging with formal-

dehyde protein-RNA crosslinking in order to extend our analysis
to cellular RNAs (Kaewsapsak et al., 2017). While this ‘‘APEX-
RIP’’ approach was effective at mapping the RNA composition
of membrane-enclosed organelles such as the mitochondrion,
its spatial specificity was poor in ‘‘open’’ or non-membrane en-
closed cellular regions. For instance, RNAs enriched by APEX tar-
geted to the ERM (facing cytosol) were no different from those en-
richedby cytosolic APEX. A version of this two-step strategy using
UV crosslinking may improve specificity (Benhalevy et al., 2018).
A more straightforward and potentially higher-specificity

approach would be to bypass crosslinking altogether and use
APEX peroxidase to directly biotinylate cellular RNAs within a
short time window (Figure 1A). To test whether peroxidase-
generated phenoxyl radicals could biotinylate RNA in vitro, we
combined horseradish peroxidase (HRP), which catalyzes the

same one-electron oxidation chemistry as APEX2, with tRNA,
BP, and H2O2. On a streptavidin dot blot, we observed robust
tRNA biotinylation that was abolished by RNase treatment but
unaffected by proteinase K treatment (Figure S1A). We next
used a RT stop assay to evaluate the labeling and found that,
while full-length transcripts are still produced, multiple RT stops
are observed at G-rich regions in peroxidase-catalyzed RNA
samples (Figures S1D and S1E). Additional experiments charac-
terized the covalent adduct between G and BP by HPLC and
mass spectrometry (Figures S1B and S1C).
To test APEX-catalyzed RNA biotinylation in living cells, we

generated HEK cells stably expressing APEX2 in the cytosol. We
labeled the cells with BP and H2O2 for 1 min, extracted total
RNA, and analyzed the RNA by streptavidin dot blot. Figure 1B
shows that RNA biotinylation is abolished upon omission of BP
orH2O2 or following treatment with RNase. Combinedwith the as-
says above, our results suggest that APEX directly tags RNA with
biotin, not merely biotinylating proteins co-complexed with RNA.
Next, we combined APEX labeling with qRT-PCR analysis of

biotinylated RNAs in order to begin assessing the spatial speci-
ficity of this approach. We started with the mitochondrial matrix,
which we have previously characterized by APEX proteomics
(Han et al., 2017; Rhee et al., 2013), and whose transcriptome
can be predicted by the sequence of the mitochondrial genome
(mtDNA) (Mercer et al., 2011). Using HEK cells expressing
APEX2 in the mitochondrial matrix, we performed labeling and
then extracted RNA and enriched the biotinylated fraction using
streptavidin beads. We optimized a series of denaturing washes
to fully dissociate complexes and ensure that the streptavidin
beads only enriched biotinylated RNA species (Figure S1F). We
then analyzed the eluate by qRT-PCR and observed strong
enrichment of mtDNA-encoded mRNAs MTND1 and MTCO2
but not negative-control cytosolic mRNAs (Figure 1C).
However, because the mitochondrial matrix is enclosed by a

tight membrane that is impervious to BP radicals (Rhee et al.,
2013), it does not provide a rigorous test of APEX labeling radius.
To evaluate spatial specificity in an open cellular compartment,
we utilized HEK cells stably expressing APEX2 on the ERM, fac-
ing cytosol. qRT-PCR analysis of streptavidin-enriched RNA
following BP labeling (Figure 1D) shows high enrichment of
secretory mRNAs (ERM-proximal ‘‘true positives’’) but not nega-
tive-control cytosolic mRNAs (encoding non-secretory proteins).
This result suggests that APEX biotinylation has nanometer
spatial resolution and is able to distinguish ER-proximal RNAs

(B) Streptavidin-biotin dot-blot analysis of direct RNA biotinylation by APEX2 in cells. HEK-293T cells expressing APEX2 in the cytosol were labeled with for 1 min

and then the RNA was extracted and blotted. Only when BP, H2O2, and APEX2 were all present was the signal observed. RNase treatment of the sample

abolished the signal.

(C) qRT-PCR analysis showing specific enrichment of mitochondrial RNAs (gray) over cytosolic mRNAs (white). Cells expressing APEX2 targeted to the mito-

chondrial matrix were labeled for 1 min. Biotinylated RNAs were enriched following RNA extraction. Data are the mean of 4 replicates ± 1 SD.

(D) qRT-PCR analysis showing specific enrichment of secretory (red) over non-secretory (gray) mRNAswith APEX-seq, but not APEX-RIP. Cells stably expressing

APEX2 targeted to the ERM membrane (facing cytosol) were labeled for 1 min. For APEX-RIP, RNAs were crosslinked to proteins for 10 min before streptavidin

beads enrichment. Data are the mean of 4 replicates ±1 SD. The data were normalized such that the mean enrichment of non-secretory RNAs was 1 for both

techniques.

(E) Human cell showing nine different subcellular locations investigated.

(F) Fluorescence imaging of APEX2 localization and biotinylation activity. Live-cell biotinylation was performed for 1 min in cells stably expressing the indicated

APEX2 fusion protein. APEX2 expression was visualized by GFP or antibody staining (green). Biotinylation was visualized by staining with neutravidin-Alexa Fluor

647 (red). DAPI is a nuclear marker. Endogenous TOM20 and CANX were used as markers for the mitochondria and ER, respectively. Scale bars, 10 mm.

See also Figure S1 and Table S1.
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from cytosolic RNAs only nanometers from the ERM. This result
strikingly contrasts with previous observations using APEX-RIP
(Kaewsapsak et al., 2017). For a further side-by-side comparison
between APEX-seq and APEX-RIP, a total of 8 representative
transcripts that are known to localize to the respective land-
marks based on previous literature, were investigated by qRT-
PCR (Figure S2E). APEX-seq enriched specific, proximal RNAs
in open subcellular regions (ERM, nuclear lamina, nucleolus,
and OMM), whereas APEX-RIP was unable to do so.

Development and Validation of APEX-Seq
Encouraged by the results above, we moved to a more compre-
hensive analysis by replacing qRT-PCRwith transcriptome-wide
sequencing. We also created cell lines expressing APEX in nine
subcellular locales (Figures 1E and S2A). For each cell line, we
verified correct targeting of APEX by performing immunofluores-
cence staining against organelle markers. To examine APEX
activity, we performed BP labeling, fixed, and stained the bio-
tinylated species using neutravidin-Alexa 647. For some loca-
tions, the neutravidin pattern overlapped closely with APEX
localization (e.g., nucleolus and mitochondrial matrix; Figure 1F),
indicating minimal diffusion of biotinylated species. For other lo-
cations, the neutravidin signal was more ‘‘spread out’’ than the
APEX signal (e.g., ERM and OMM; Figure S2B), suggesting
redistribution of biotinylated species during the 1-min labeling
time window (Hung et al., 2016).
To assess the quality of the poly(A)-selected APEX-seq data

(Figures S2C and S2D; Table S2), we first focused on two subcel-
lular compartments that have been extensively mapped: the
mitochondrial matrix and the ERM. For the former (Figures 2A
and 2B), APEX-seq experiments showed strong enrichment of
all 13 mRNAs and the 2 rRNAs encoded by mtDNA (Figures
S2F and S2G), while no RNAs encoded by the nuclear genome
were highly enriched.
For the ERM, APEX-seq highly enriched RNAs previously

shown to be ER proximal (such as mRNAs encoding secreted
proteins) over cytosol-localized RNAs. To perform a quantitative

analysis, we used ROC cutoff analysis (Linden, 2006) (Figures
S2I and S2J) to produce a list of 1,077 ERM-enriched RNAs (Fig-
ure 2C). To evaluate the specificity of this dataset, we deter-
mined the fraction of ‘‘secretory’’ or ‘‘transmembrane’’ mRNAs
(STARMethods) and found that 90%of genes had such prior an-
notations. The remaining 10% (107 genes) could be false-posi-
tives, or they could be newly discovered ERM-associated RNAs.
To evaluate depth of coverage, we prepared a hand-curated

list of 71 well-established ER-resident proteins and asked what
fraction of their corresponding mRNAs appear in our ERM
APEX-seq dataset. We recovered 70% of this true-positive list
(Figure S2K). This sensitivity is comparable to that of our previ-
ous APEX proteomic datasets in open compartments (Hung
et al., 2017) (Figure S2L). RNAs we failed to enrich could be ste-
rically shielded in the live cell environment, low in abundance, or
dual-localized to both ERM and cytosol.
The ERM-associated transcriptome has previously been stud-

ied by fractionation-seq (Reid and Nicchitta, 2012) and prox-
imity-specific ribosome profiling (Jan et al., 2014). Upon
analyzing the published datasets, we found that the specificities
of fractionation-seq and APEX-seq were comparably high (90%
versus 91% secretory mRNAs, respectively; Figure S2I), in addi-
tion to sensitivity (Figure S2K). However, Figure 2D shows that
each method recovers somewhat different subsets of tran-
scripts. Further analysis of genes enriched by APEX-seq but
not fractionation-seq or ribosome profiling show that many of
these are lower in RNA abundance (Figure 2E).
Altogether, our APEX-seq analysis demonstrates that high

specificity and reasonable sensitivity can be achieved in both
membrane-enclosed and open subcellular compartments.

RNA Atlas of 9 Distinct Subcellular Compartments by
APEX-Seq
Having established the specificity and sensitivity of APEX-seq
using the mitochondrial matrix and ERM, we turned our attention
to the seven other compartments (Figure 1E). The RNA content
of most of these regions has not previously been mapped, as

Figure 2. Validation of APEX-Seq, Including Specific Orphans from RNA Atlas
(A) APEX-seq in themitochondrial matrix. Transcript abundance in experiment plotted against negative control (omit H2O2). All mRNAs and rRNAs encoded by the

mitochondrial genome (large blue dots) are enriched by APEX (mean enrichment >11-fold). FPKM, fragments per kilobase of transcript per million reads. Due to

the 100-nt size selection step during RNA extraction, tRNAs were not efficiently recovered.

(B) Scatterplot of transcript abundance in the mitochondrial matrix (MITO).

(C) APEX-seq at the ERM, facing cytosol. Volcano plot showing APEX-catalyzed enrichment of secretory mRNAs (red) over non-secretory mRNAs (black).

(D) Comparison of ERM-enriched RNAs by APEX-seq, proximity-specific ribosome profiling, and ER fractionation-seq.

(E) Transcript abundance (FPKM) analysis of genes enriched by ERMAPEX-seq, fractionation-seq, proximity-specific ribosome profiling, and genes unique to the

APEX-seq dataset. p values are from a Mann-Whitney U test.

(F) Total number of orphans (blue) generated from APEX-seq RNA datasets, with those validated by further poly(A)+ fractionation-seq shown in black. The source

of most of these RNAs is the RNA atlas, with further contributions from analysis of the ERM and OMM transcriptomes.

(G) APEX-seq yields cleaner results than bulk fractionation RNA-seq. Nucleus APEX-seq fold changes are highly correlated with bulk fractionation RNA-seq when

considering non-ER genes (blue). However, fractionation suffers from contamination by ER transcripts (black).

(H) APEX-seq in the cytosol does not recover mitochondrial-genome encoded RNAs, whereas fractionation-seq does. mRNAs and rRNAs encoded by the

mitochondrial genome are shown in blue, whereasmRNAs for mitochondrial proteins encoded by the nuclear genome are shown in grey. p value is from aMann-

Whitney U test.

(I and K) Sequential smFISH imaging of OMM (I) or ERM (K) orphans in HEK cells. MTND5 was used as a mitochondrial marker. SCD and TSPAN3 were used as

ERM markers. mRNAs and lncRNAs not enriched in OMM (I) or ERM (K) were used as negative controls. Expanded views of the boxed region are shown on the

right. Scale bar, 5 mm.

(J and L) Quantitation of OMM (J) or ERM (L) orphans colocalization with MTND5 (J) or SCD (L) by sequential smFISH imaging. Blue lines represent mean from 14

independent fields of view. Data were analyzed using a two-tailed Student’s t test, with *p < 0.05, **p < 0.01, and ***p < 0.001; N.S., not significant (p > 0.05).

See also Figure S2 and Tables S2 and S3.
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Figure 3. Analysis of Subcellular Transcriptome Maps
(A) T-distributed stochastic neighbor embedding (t-SNE) plot showing separation and clustering of APEX-seq libraries.

(B and C) Genome tracks for XIST (B), a nuclear non-coding RNA, and (C) IARS2, an mRNA encoding a mitochondrial tRNA synthetase. For each location, the

reads were averaged across two APEX-seq replicates. The control tracks were generated by averaging 18 controls from all 9 constructs.

(D) Heatmap of transcripts enriched by APEX-seq showing clustering of the genes that specifically localize to at least one location and have fold-change data from

all locations.

(E) Heatmap showing the APEX-seq fold changes for the mRNA transcripts found to be most variable among the locations investigated.

(F) Heatmap showing the APEX-seq fold changes for non-coding RNAs (excluding pseudogenes) that have the most-variable localization enrichment. A few

well-known noncoding RNAs are shown in bold.

(G) Of the !3,250 genes analyzed, most localize to only one or two of the eight locations (excluding mitochondrial matrix) interrogated.

(legend continued on next page)
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they are impossible to purify and/or too small to image unambig-
uously by conventional microscopy. As such, it is impossible to
generate true positive and false positive lists of known resident
and non-resident RNAs respectively with which to perform
ROC-based cutoff analysis. We therefore opted for a universal
enrichment-factor cutoff of 0.75 (log2 fold change) and q value
(false discovery rate [FDR]-adjusted p value) cutoff of 0.05, which
was applied to all compartments (STAR Methods). By intersect-
ing data from each pair of replicates, we obtained RNA lists for all
nine compartments (Table S3).
These lists provide a wealth of observations about the RNA

composition of diverse cellular locales. Many RNAs are ‘‘or-
phans,’’ never previously linked to the compartment to which
APEX-seq assigns them. For instance, our APEX-seq atlas (Fig-
ure 2F) newly assigns 324 RNAs to the nucleolus, 114 RNAs to
the lamina, and 111 RNAs to the OMM. To provide further confi-
dence in these spatial assignments, we analyzed a subset of
high-abundance RNAs by sequential smFISH imaging (Fig-
ure 2I–2L) and found that 6 out of 10 OMM orphans and 7 out
the 8 ERM orphans displayed significant smFISH enrichment
at the mitochondria and ERM, respectively.
To further validate nuclear and cytosolic RNAs enriched by

APEX-seq, we performed poly(A)+ nuclear/cytosolic fraction-
ation of matched HEK cells (Figure 2G). Of the 95 nuclear and
14 cytosolic APEX-seq orphans for which we could obtain
high-quality fractionation-seq reads, 84 of the nuclear and 4 of
the cytosolic RNAs were validated (Figure 2F). Overall, fraction-
ation-seq validated 81% (n = 88/109) of orphan genes.
The availability of matched fractionation-seq datasets gives us

the opportunity to compare head-to-head with APEX-seq. Over-
all, we found that both nuclear and cytosolic APEX-seq datasets
were much more specific than our corresponding fractionation-
seq data. For instance, our APEX-seq gene lists lacked the mito-
chondrial matrix and ER contaminants present in the cytosolic
and nuclear fractionation data, respectively (Figures 2G, 2H,
and S3F). Excluding ER transcripts in the nuclear fractionation-
seq dataset (using ERM APEX-seq gene list), we compared the
remaining genes to APEX-seq in order to estimate the accuracy
(94%) and precision (96%) of our methodology. We also
observed that the RNA length distributions in nuclear fraction-
ation and APEX-seq are very similar (Figure S3E).

General Features of theHumanTranscriptomeRevealed
by APEX-Seq RNA Atlas
Our APEX-seq atlas reveals interesting patterns and features for
the human transcriptome (Figure 3A). For >3,200 RNAs, we ob-
tained high enrichment scores (log2 fold change >0.75) in at least
one of the nine locations. Unbiased clustering analysis revealed
that RNAs broadly partition into four general localization cate-
gories (Figures 3A and 3D): (1) nuclear, (2) mitochondrial mem-
brane and ER, (3) cytosol, and (4) the remaining (which includes
ER lumen, mitochondrial matrix, and nuclear pore). Most tran-
scripts further localized to just one or two locations within each

category (Figures 3D and 3G; STAR Methods). Comparing
mRNAs to long noncoding RNAs (lncRNAs) (Figures 3E and 3F),
our dataset showed that the former mostly localize to one of the
cytosolic or nuclear locations, while lncRNAs are predominantly
nuclear, consistent with previous studies (Cabili et al., 2015).
We observed substantial overlap between OMM and ERM-

associated transcriptomes (Figures 3H and 3I). Using more
stringent cutoffs based on ROC analysis, we confirmed that
two-thirds of RNAs are shared by OMM and ERM, with almost
95% of shared mRNAs encoding secreted proteins (Figures
S3C and S3D). It may be that specific subsets of mRNAs are
translated at mitochondria-ER contact sites (Friedman et al.,
2011; Giacomello and Pellegrini, 2016; Valm et al., 2017).
We used our APEX-seq atlas to explore the relationship be-

tween protein localization and localization of its encoding
mRNA,making use of existing data on protein subcellular localiza-
tion (Thul et al., 2017). Our analysis (Figure 3J) reveals remarkable
concordance between RNA and protein localization at steady
state. For example, the ERM-proximal transcriptome preferen-
tially codes for proteins that localize to the ER, Golgi, and vesicles,
rather than proteins that localize to the nucleus, nucleolus, or
cytosol. Less expectedly, our data also show that mRNAs en-
riched in nuclear locations tend to code for proteins enriched in
nuclear speckles and nucleoplasm, but not the plasmamembrane
(Figures 3J, S3A, andS3B). This result is surprising if protein trans-
lation occurs exclusively in the cytosol. Alternatively, it has been
suggested that mRNAs in the nucleus might serve as ‘‘reserve
pools’’ that help to dampen gene-expression noise (Bahar Hal-
pern et al., 2015; Battich et al., 2015; Hansen et al., 2018). We
speculate that nuclear-destined proteins (Thul et al., 2017), which
are highly enriched for nucleic-acid binding proteins (FDR < 5 3
10"13, GO biological process) whose concentrations may have
to be precisely tuned, may have mRNAs that are retained in nu-
clear subcompartments in order to better shield the amount of
mRNA available for translation from noise.
The ability of our atlas to position endogenous RNAs with

respect to distinct subcellular landmarks provides an exciting op-
portunity to test novel hypotheses concerning the relationship be-
tween RNA localization and function. For example, the atlas
shows that XIST (X-inactive specific transcript), a nuclear lncRNA,
is enriched at the nuclear lamina but not the nearby nuclear pore
(Figure 3B). These findings are consistent with the known role of
XIST in coating the inactive X chromosome in female cells (Penny
et al., 1996), leading to transcriptional silencing and localization of
the inactive X to the nuclear lamina (Chen et al., 2016). Another
example is IARS2 (mitochondrial isoleucyl tRNA synthetase 2, en-
coded by the nuclear genome), whose mRNA was identified by
APEX-seq at the OMM (Figure 3C). Because IARS2’s protein
product is known to reside in the mitochondrial matrix, the
APEX-seq data suggest local translation of the mRNA at the
OMM, a point we further explore in Figures 6 and 7.
Two other RNAs of note are TUG1 and NORAD, lncRNAs

localized by APEX-seq to both the ERM (validated by smFISH

(H) Circos plot showing the co-localization of RNAs to multiple locations.

(I) Transcripts overlapping in multiple locations.

(J) Heatmap showing the protein localization of the transcripts enriched by APEX-seq.

See also Figure S3.
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imaging in Figures 2K and 2L) and the nucleus.While themajority
(97%) of ERM APEX-seq-enriched species are mRNAs, our da-
taset highlights 31 noncoding RNAs, which are impossible to
detect by ribosome profiling or ER fractionation-seq, because
they are not translated.

APEX-Seq Reveals Differential Localization for
Transcript Isoforms
Because APEX-seq is a sequencing-based methodology
providing not only gene identity but full sequence details for

each enriched RNA, we use it to support the hypothesis that
different transcript isoforms of the same gene may localize to
different regions of the cell (Mayr, 2017). For example, FUS
(fused in sarcoma) mRNA, encoding a nuclear protein implicated
in amyotrophic lateral sclerosis (ALS) and phase separation
(Patel et al., 2015), shows intron retention within the nuclear loca-
tions, but not cytosolic ones (Figure 4A). Dead-BOX helicases 5
(DDX5) and 17 (DDX17) are additional examples of RNAs with re-
tained introns (Figures 4B and 4C). The nuclear enrichment of re-
tained introns was also observed in our fractionation-seq data

A

B

C

D E

I

J K

HG
F

Figure 4. APEX-Seq Reveals Principles Related to RNA Isoforms and Introns
(A–C) The genome tracks of (A) FUS mRNA. (B) and (C) show the genome tracks of two other transcripts, DDX5 and DDX17, with retained introns.

(D) Fractionation-seq (green) and nucleus APEX-seq (red) identify roughly the same genes with retained introns. The nuclear-pore APEX-seq transcriptome has

fewer retained introns relative to the nucleus.

(E) Using APEX-seq, we identify transcripts that are highly abundant in both cytosol and nucleus at the gene level but switch isoforms at the transcript level. TPM,

transcript per million.

(F–H) Browser tracks showing examples of isoform switching across nuclear and cytosolic locations for (F) KAT2A (lysine histone acetyltransferase 2A) in a

putative coding sequence (CDS), (G) NCBP3 (nuclear cap-binding protein subunit 3) in the 30 UTR, and (H) HNRNPU (heterogenous nuclear ribonucleoprotein U)

in the 50 UTR, respectively. Arrows indicate direction of transcription.

(I) Number of m6A present per transcript enriched by APEX-seq. High-confidence m6A sites were obtained from the literature (Meyer et al., 2012). p values are

from a Fisher’s exact test.

(J) Cumulative distribution of the introns length for genes enriched by APEX-seq in the nuclear locations.

(K) Bar plots of average length of nuclear pore and nucleus enriched transcripts by mature transcript length, 50 UTR, CDS (coding sequence) and 30 UTR. p values

are from a one-sided Mann-Whitney U test. Errors are SEM.

See also Figure S4.
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(r = 0.78) although without the sub-nuclear resolution that APEX-
seq provides. Interestingly, we observed that APEX at the nu-
clear pore enriched fewer transcripts with retained introns than
APEX at other nuclear locations (Figures 4D and S4A–S4C),
consistent with the role of the pore as a ‘‘gene gate’’ for RNA
quality control.
In addition to retained introns, APEX-seq revealed a group of

RNAs that show no gene-level subcellular localization differ-
ences but exhibit substantial spatial heterogeneity at the
transcript-isoform level (‘‘isoform switching’’; Figures 4E and
S4A–S4E). Two such examples are the mRNAs for the oncogene
AKT2 and the circadian rhythm gene CSNK1D, which show iso-
form switching between the nucleus and cytosol. In some cases,
isoform switching extends to the 50 UTR, 30 UTR, and coding re-
gions of transcripts (Figures 4F–4H). Overall, we find hundreds of
genes with alternative 50 and 30 splice sites (Figures S4F and
S4G). These results naturally nominate specific exons associ-
ated with each isoform for localization to specific subcellular
locations, which in turn could affect downstream functions (Ber-
kovits and Mayr, 2015).

Nuclear Pore as a Staging Area for RNA Export
RNA transcripts must pass through the nuclear pore to go from
their production sites in the nucleus into the cytoplasm. Previous
studies have suggested that the nuclear pore may act as a stag-
ing area for cytoplasm-destined transcripts (Wickramasinghe
and Laskey, 2015). Our APEX-seq data reveal a striking similarity
between RNAs enriched at the nuclear face of the nuclear pore
(where APEX is expressed as a fusion to the pore-basket-binder
SENP2 (Sentrin-specific protease 2) (Walther et al., 2001) and
RNAs in the cytoplasm (Figure 3D), in contrast to RNAs from
other nuclear locations (Figure 3A).
Our results support the prevailing view that the nucleoplasmic

milieu (Blobel, 1985; Brown and Silver, 2007; Kim et al., 2018) of
the pore has a critical role in mRNA surveillance, allowing only
properly spliced and sorted transcripts ready for export to cyto-
plasm to congregate (while retaining partially spliced transcripts
in the nucleus) (Figures 4A–4C).

m6A Modification and RNA Length in Nuclear Pore
Localization
While RNA processing for nuclear export is complex and highly
regulated, the rate-limiting step for mRNA transport is believed
to be access to and release from the nuclear pore complex
(NPC) (Grünwald and Singer, 2010; Ma et al., 2013). N6-methyl-
adenosine (m6A) modification of pre-messenger RNAs has been
reported as a ‘‘fast track’’ signal for nuclear export (Roundtree
et al., 2017), while RNA length has been hypothesized as a
feature influencing RNA export, with long RNAs taking more
time to remodel and exit.
When we intersected nuclear-pore APEX-seq data with m6A

modification sites (Meyer et al., 2012), we found a significant
depletion ofm6A in transcripts enriched near the pore, compared
to nuclear lamina or the cytosol (Figure 4I). Our data support the
hypothesis that m6A-modified transcripts transit quickly through
the NPC, leading to low biotinylation by APEX-seq. However,
although transcripts at the pore had less m6A than other nuclear
locations, the transcript density of m6A was not significantly

different across these locations. Nonetheless, transcripts at
both the pore and other nuclear locations had lower m6A density
(i.e., sites per kilobase) than the cytosol.
We also examined RNA length in our nuclear-pore APEX-seq

data. We found that transcripts enriched at the pore tend to be
shorter than transcripts at other nuclear locations. This inverse
relationship between RNA length and nuclear pore APEX enrich-
ment is significant both in the mature transcript and the introns
only (Figures 4J, 4K, S4H, and S4K). For protein-coding tran-
scripts, the 30-UTR length is most predictive of nuclear pore
APEX-seq enrichment (Figure 4K). A possible interpretation of
our data is that longer RNAs pass more quickly through the
pore, leading to lower APEX-seq enrichment, which could be
the case if shorter RNAs assemble with fewer RNA-binding pro-
teins (RBPs), including those necessary for recognition and pas-
sage through the pore.
Although different processes exist to export intronless mRNAs

(Delaleau and Borden, 2015), we did not observe a significant
difference in the proportion of intronless transcripts at the pore
relative to other locations (Figure S4I).

RNA Repeats and Genomic Position Influence Sub-
Nuclear RNA Localization
Repeat sequences make up a majority of the human genome (de
Koning et al., 2011), with interspersed nuclear elements SINE
(short) and LINE (long) containing retrotransposable (transposable
via RNA intermediates) elements that can be deleterious when
active and randomly moving to new genomic sites (Ichiyanagi,
2013). We observed enrichment of SINEs and LINEs within the
nuclear locations (Figures 5A and S5A–S5D), with the highest
enrichment of these elements in the nuclear lamina. The cytosolic
locations and the nuclear pore showed no enrichment
(Figure S5E). Given the known accumulation of transcription-
repression machinery at the lamina (van Steensel and Belmont,
2017), our observations may help to explain the recent findings
that LINE (L1) elements are epigenetically silenced (Padeken
et al., 2015). Likewise, transcripts enriched at the nuclear lamina
had lower expression level thanother nuclear locations, consistent
with the idea of heterochromatin deposition and gene silencing at
lamina-associated domains (LADs) (Figures 5C and S5G–S5I).
Second, location of the DNA locus from which an RNA origi-

nates is believed to strongly dictate nuclear RNA location (Dekker
et al., 2017), which we find support for. For example, previous
work has shown that the nucleolus is enriched for DNA coding
for rRNAs (van Koningsbruggen et al., 2010), while our APEX-
seq atlas shows that rRNA repeat motifs (Wheeler et al., 2013)
are highly enriched in the nucleolus but far less in the nuclear lam-
ina or cytosol (Figure 5B). We also find that mRNA of genes
residing in DNA nucleolus-associated domains (NADs) (Dillinger
et al., 2017; van Koningsbruggen et al., 2010) are highly enriched
in the nucleolus (odds ratio = 4.4; 95% confidence interval [CI] =
1.7–14) (Figures 5D and S5J). For DNA loci in LADs (Guelen et al.,
2008), their corresponding RNA were enriched in the lamina
APEX-seq (odds ratio = 11; 95%CI = 3.8–43) (Figures S5J–S5M).

Distinct Mechanisms of mRNA Localization to the OMM
Human mitochondrion contains >1,100 protein species (Calvo
et al., 2016), only 13 of which are encoded by the mitochondrial
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genome (mtDNA) and translated within the organelle. The
remainder are encoded by the nuclear genome and must be
delivered to the mitochondrion after translation in the cytosol
(Mercer et al., 2011). The identification of ribosomes at the
OMM (Kellems et al., 1974, 1975) led to the hypothesis that
some mRNAs encoding mitochondrial proteins may be locally
translated at the OMMand co-translationally or post-translation-
ally imported into the mitochondrion (Gold et al., 2017) (Fig-
ure 6A). However, at present little is known about the landscape
of RNAs at the mammalian mitochondrial membrane, despite its
importance for understanding mitochondrial biogenesis.

We mined our APEX-seq atlas for insights about mitochon-
dria-proximal RNAs in human cells and found that the OMM
compartment was enriched in mRNAs encoding mitochondrial
proteins (Figure 3J). When plotted by OMM APEX-seq enrich-
ment, we observed a significant increase in enrichment of nu-
clear-encoded mitochondrial genes over non-mitochondrial,
non-secretory genes (Figure 6B; Table S4). By contrast, no in-
crease in enrichment of mitochondrial genes was observed
when RNAs were plotted by ERM APEX-seq enrichment score
(Figure 6C). These results support the notion that mitochondrial
transcripts accumulate at the OMM, possibly for the purpose
of local protein translation. Examination of our OMM-enriched
mRNAs did not reveal any pattern in terms of protein functional
class or sub-mitochondrial localization of the encoded proteins.
In an effort to further tease apart possible mRNA subpopulations
that may be targeted to the OMM by different mechanisms,
we repeated APEX-seq labeling under different perturbation
conditions.

Taking advantage of the rapidity of APEX-seq tagging, we
treated cells expressing OMM-APEX2 with cycloheximide
(CHX), puromycin (PUR), or carbonyl cyanide m-chlorophenyl
hydrazone (CCCP), prior to labeling (Figure S6A). CHX and
PUR are both protein translation inhibitors but they work by
different mechanisms. CHX stalls translation but preserves the
mRNA-ribosome-nascent protein chain complex, while PUR
dissociates mRNAs from ribosomes. CCCP abolishes the mito-
chondrial membrane potential and thereby stops membrane
potential-dependent processes including TOM (translocase of
outer membrane)/TIM-mediated import of mitochondrial pro-
teins (Chacinska et al., 2009).
After treatment of cells with CHX, we observed a dramatic in-

crease in the number of mitochondrial genes and their extent of
OMMenrichment (Figures 6B and 6D), consistent with amodel in
which mRNA localization to the OMM can be regulated by the
encoded protein’s mitochondria-targeting sequence. As it
emerges from the ribosome, the nascent peptide is localized to
the OMM together with the still translating mRNA. Indeed, we
found that the most-CHX-enriched mitochondrial genes have
higher TargetP scores on average (Figures 6E–6G); TargetP is
a measure of mitochondrial targeting potential (Emanuelsson
et al., 2007). Hence, OMM APEX-seq following CHX appears
to highlight a subpopulation of that may localize to the OMM in
a ribosome-dependent fashion (Figure 6H). Figures 6I and S6C
show the genome tracks of example mRNAs,HSPA9 (mitochon-
dria heat shock protein A9) and MUT (methylmalonyl-coA
mutase), respectively, that display increased OMM localization
upon CHX treatment.

A B C D

Figure 5. The Underlying Features of Nuclear RNA Localization
(A) Examination of retrotransposable elements in transcripts uniquely localizing to different locations show an enrichment of these elements in the nuclear-lamina

transcriptome.

(B) Heatmap of Z score showing that transcripts localizing to the nucleolus are enriched in rRNA repeat motifs, relative to the nucleus.

(C) Within the nuclear locations, the nuclear-lamina-enriched transcripts have a lower abundance relative to both the nucleus and the nucleolus. p value is from a

Mann-Whitney U test.

(D) Examination of the genes found in DNA lamina-associated domains (LADs) and nucleolus-associated domains (NADs) confirms that the corresponding

transcriptomes are enriched for those genes. Here we restrict analysis to transcripts uniquely enriched in the respective locations. p values are from Fisher’s

exact tests.

See also Figure S5.
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Treatment of cells with PUR produced a pattern of enrichment
distinct from CHX treatment. The vast majority of CHX-enriched
mRNAs were no longer observed at the OMM, consistent with
the hypothesis that the localization of these transcripts depends
on an intact ribosome complex (Figures 6B and S6E). Nonethe-
less, a subpopulation of mRNAs remained clearly associated
with the OMM after PUR; the top OMM-localized genes were
not higher in TargetP, in contrast to CHX-enriched genes (Fig-
ure 6F). Functional class analysis revealed that PUR-enriched
genes have a higher likelihood of encoding mitochondrial ribo-
some and oxidative phosphorylation (OXPHOS) components
(Figures 6G, 6J, 6K, and S6F), which are the two complexes
that require the coordinated assembly from the nuclear and
mitochondrial genomes (Couvillion et al., 2016). Figures 6L and
S6D show genome tracks of a representative mitochondrial ribo-
somal-protein gene, MRPS18B (28S ribosomal protein S18b),
and OXPHOS gene, NDUFB9 (NADH:ubiquinone oxidoreduc-
tase subunit B9), respectively. The PUR data thus suggest that
a subpopulation of mRNAs associates with the OMM in a ribo-
some- and nascent-chain-independent fashion, perhaps by
binding directly to a OMM-localized RNA binding protein
(Figure 6H).

Upon treatment with the mitochondrial uncoupler CCCP, the
genes enriched at the OMM are similar to PUR-enriched genes
(Figures 6F, 6G, and 6J). CCCP-enriched genes must not
depend on the mitochondrial membrane potential or mitochon-
drial protein import for their OMM localization. Perhaps by
causing a reduction in interactions between the ribosome-
mRNA-nascent chain complexes and TOM/TIM at the OMM,
the association of ribosome-independent mRNAs with the
OMM under CCCP becomes more readily apparent.

The availability of basal along with three ‘‘drug perturbation’’
OMM APEX-seq datasets enabled us to perform higher-order
clustering analysis. Figure 6M shows transcripts that were en-
riched at the OMM in at least one condition. We find that RNAs
cluster into groups based on their enrichment in CHX versus
PUR, with some clusters strongly predictive of genes coding

for mitochondrial proteins (Figure S6H). In particular, in clusters
1, 4, and 6 that included transcripts strongly enriched upon
CHX treatment and depleted upon PUR treatment, >90% of
RNAs (n = 128/140) code for mitochondrial proteins. 7 of the re-
maining 12 transcripts were pseudogenes, with at least 3 of the 5
mRNAs likely to be mitochondrial (Figures S6I–S6J) based on
other studies (Mou et al., 2009; Pandey et al., 2017; Thul et al.,
2017). Thus, OMM APEX-seq data could be used to predict
whether certain genes will code for mitochondrial proteins.

Analysis of Motifs that Predict RNA Localization to the
Mitochondrion
By using PUR and CHX treatments, we disentangled RNA pop-
ulations that localize to the OMM via ribosome-dependent
versus ribosome-independent mechanisms (Figure 6H). We
next investigated two hypotheses: (1) that PUR-enrichedmRNAs
(‘‘ribosome-independent’’) possess specific RNA sequences
that predict their OMM localization, and (2) that CHX-enriched
mRNAs (‘‘ribosome-dependent’’) possess specific amino-acid
features that predict OMM localization. To test these hypothe-
ses, we first classified OMM-enriched transcripts as either ribo-
some-dependent or RNA dependent (if they localized to OMM
under PUR) (Figure 7A). We trained a random-forest classifica-
tion algorithm to predict localization of these two categories of
transcripts to the OMM versus the ERM (which we used as
‘‘background’’), using 6-mers as RNA features (STAR Methods).
The resulting classifier wasmuch better at predicting localization
of RNA-dependent transcripts relative to ribosome-dependent
ones (Figure 7B). The converse result was obtained when using
the corresponding N-terminal 100 amino acid peptide for training
(Figures 7C and 7D), suggesting that the peptide sequence is
more predictive for ribosome-dependent transcripts.
We looked further into the RNA features that may be predictive

of OMM localization (Table S5) and found that the 50 UTR was
least important and the 30 UTR most informative (Figures S7A
and S7B). The most-important 6-mer sequences were G/U
rich, with one of the other top hits being the poly(A)-signal

Figure 6. Distinct Subpopulations of mRNAs at the OMM
(A) Schematic diagram showing the mitochondria with all perturbations used in this study, including those that affect ribosomes (puromycin [PUR] and cyclo-

heximide [CHX]), mitochondrial membrane potential (carbonyl cyanide m-chlorophenyl hydrazone [CCCP]), andmicrotubules (nocodazole [NOC]). RNA is shown

in blue, ribosomes in gray, and microtubules in green.

(B) Gene density distribution of OMM APEX-seq enrichment under different conditions. p values are from Mann-Whitney U tests.

(C) Gene density distribution of ERM APEX-seq enrichment. Genes are categorized as in (B). p value is from a Mann-Whitney U test.

(D) Scatterplot of OMM APEX-seq log2 fold change comparing the basal and CHX conditions.

(E) Cumulative fraction of genes in different conditions by TargetP values. CHX treatment shows increased OMM targeting of genes with high TargetP values.

Genes are categorized by their TargetP values (see STAR Methods) on a scale from 5 (strongest N-terminal mitochondrial targeting peptide) to 0 (no N-terminal

mitochondrial targeting peptide). p values are from Kolmogorov-Smirnov (KS) test.

(F) Comparing the proportion of transcripts with different TargetP values and average TargetP value among top 100mitochondrial genes enriched byOMMAPEX-

seq in cells under different conditions and all MitoCarta genes.

(G) Comparing the proportion of transcripts in different functional classes among top 100mitochondrial genes enriched byOMMAPEX-seq in cells under different

conditions and all MitoCarta genes. Genes are functionally classified according to Gene Ontology.

(H) Model summarizing two distinct subpopulations of mitochondrial RNAs proximal to mitochondria.

(I) Browser tracks of a mitochondrial gene (HSPA9, targetP = 5) show increased enrichment by OMM-APEX upon CHX treatment.

(J) Cumulative fraction of OXPHOS and mitoribosome-related genes in different conditions. p values are from KS test.

(K) Scheme illustrating the coordinated assembly of respiratory chain complexes and mitoribosomes between the nuclear and mitochondrial genomes.

(L) Browser tracks of a mitochondrial ribosomal gene (MRPS18B) that show increased enrichment by OMM-APEX upon PUR or CCCP treatment.

(M) Heatmap of fold changes for transcripts enriched by OMMAPEX-seq. Upon clustering based on the basal, CHX, and PUR conditions, we obtain clusters that

are either strongly enriched or depleted in the corresponding mitochondrial proteins.

See also Figure S6 and Table S4.
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Figure 7. Features of Ribosome-Dependent and RNA-Dependent Transcripts at OMM
(A) Based on the effect of PUR and CHX, we binned genes from heatmap (Figure 6M) into two categories: ribosome dependent and RNA dependent.

(B) ROC curves from an unsupervised random-forest classifier that predicts transcript localization to OMM (versus ERM). To train the classifier, the transcript

sequences were divided into 4,096 (= 46) 6-mers. Plotted is the mean performance (dark line) and the range from 10-fold cross-validation.

(C) Same as (B) but using the first 100 coding amino acids (aa) for training. Due to the much larger possible space of aa-variation, we used 3-mers (= 223 k-mers)

instead of 6-mers for training.

(D) Similar model using 6-mer RNA sequences was used to classify transcripts as ribosome-dependent or RNA-dependent.

(E) Using the poly(A) SVM package, which predicts polyadenylation site scores, we find the RNA-dependent transcripts have low polyadenylation scores.

(F) Using a poly(A) tail-length dataset (Subtelny et al., 2014), we found RNA-dependent transcripts have shorter poly(A)-tail length relative to ribosome-dependent

transcripts. p values are from Mann-Whitney U test.

(G) Correlation of fold change upon 30-min NOC treatment (where effect saturates) and the corresponding change upon PUR treatment. Changes are measured

relative to basal conditions.

(H) Schematic diagram of the time-course APEX-seq protocol.

(I) Number of transcripts enriched by OMM-APEX-seq.

(J) Progressive depletion of basal OMM transcripts upon NOC treatment.

(K) Heatmap of genes enriched by APEX-seq in any of the time points. We clustered on the first 4 times points.

(L) Enrichment change as function of NOC treatment time for the three major clusters. Data are median fold change ±1 sigma.

(M) Half-lives for transcripts in Cluster 2.

See also Figure S7 and Tables S5 and S6.
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sequence AAUAAA (Figure S7C). In support of our findings, the
predicted poly(A) SVM score (a measure of poly(A)-site predic-
tion) (Cheng et al., 2006) of RNA-dependent transcripts is sub-
stantially different from that of ribosome-dependent transcripts
(Figure 7E). We also found that RNA-dependent OMM tran-
scripts have significantly shorter poly(A)-tail lengths than ribo-
some-dependent transcripts, as well as shorter 30 UTRs (Figures
7F and S7D). Altogether, our findings support the two hypothe-
ses above and reveal specific RNA and protein features that
are predictive of OMM localization.

Kinetics of RNA Transport to the Mitochondrion
Previous studies have suggested that RNA may arrive at the
OMM via active microtubule-based transport (Buxbaum et al.,
2015). To investigate this hypothesis, we repeated the OMM
APEX-seq labeling after treating cells for various lengths of
time with the microtubule-polymerization inhibitor nocodazole
(NOC), which is known to inhibit transport (Reck-Peterson
et al., 2018; Shen et al., 2018). We confirmed by imaging that
NOC treatment does not perturb the localization of the OMM-
APEX2 construct (Figure S7E). Figures 7H and 7I shows that
30 min of NOC led to a depletion of mRNAs at the OMM. The
RNAs remaining at the OMM were more similar to those
observed under PUR (r = 0.72) compared to those under CHX
(r = 0.32) (Figures 7G and S7H). The selective disappearance
of ribosome-dependent mRNAs from the OMM suggests that
these mRNAs may utilize the cytoskeletal network to reach the
OMM (Figure 6A).

Analysis of NOC time-course data (Figures 7H, 7I, S7F, and
S7G; Table S6) showed that the majority of RNAs disappear
rapidly from the OMM following NOC treatment. This decrease
is observed for both mRNAs that encode mitochondrial proteins
and other RNAs (Figure 7J). Further analysis resolved at least
three patterns of responses to NOC (Figures 7K and 7L). The
largest cluster shows rapid loss from the OMM with half-life
dissociation data that could be fit by a log-normal distribution
(Figure 7M), suggesting that many rate-limiting events could be
involved. While further studies are needed to characterize these
responses (as perturbing the cytoskeleton can have wide-
ranging effects), our observations do showcase the power of
rapid APEX-seq labeling to resolve dynamic transcriptome-
wide RNA localization events.

DISCUSSION

With quantitative enrichment scores and detailed transcript
profiles for over 25,000 distinct human RNA species across
nine subcellular compartments, our study reveals patterns of
RNA localization that give rise to a variety of biological hypoth-
eses. APEX-seq yields RNA sequence information down to
single-nucleotide resolution, thereby filling a critical gap in the
landscape of RNA technologies. Our APEX-seq-derived atlas
of transcriptome localization provides a comprehensive
and precise delineation of RNA spatial organization in the living
cell.

APEX-seq adds to arsenal of RNA localization methods
while offering unique advantages. The first strength of
APEX-seq is that labeling is performed in living cells, while

membranes and macromolecular complexes are still intact.
Second, APEX-seq can be used to analyze ‘‘unpurifiable’’
structures such as the nuclear lamina and OMM that are
impossible to access via fractionation-based approaches.
The third strength of APEX-seq is that it provides full
sequence information for diverse classes of RNA transcripts,
allowing transcript isoforms with distinct localization to be
distinguished (Figures 4F–4H). Fourth, while ribosome
profiling captures actively translating mRNA on polysomes,
APEX-seq additionally detects lncRNAs, antisense RNAs (Fig-
ures 3E and 3F) and untranslated mRNAs not bound to ribo-
somes. Finally, the high spatiotemporal resolution sets
APEX-seq apart from APEX-RIP, which loses spatial speci-
ficity in non-membrane enclosed regions (Figure 1D).
A disadvantage of APEX-seq is that it requires an APEX fusion

construct to be recombinantly expressed in the cell of interest,
which limits applicability to human tissue. Also, APEX-seq
does not provide single-cell information like imaging-based
methods. Finally, because labeling is performed in live cells,
APEX-seq coverage will be fundamentally limited by the steric
accessibility of RNAs in their native environment; RNAs that
are buried within macromolecular complexes may not be
tagged. These limitations suggest directions for future
improvement.
We expect that APEX-seq will be broadly applicable to

many organisms and cell types, just as APEX proteomics
has been extended to flies (Chen et al., 2015a), worms (Reinke
et al., 2017), yeast (Hwang and Espenshade, 2016), and neu-
rons (Loh et al., 2016). APEX-seq could be fruitfully applied to
polarized cells, neurons, or dynamic developmental systems.
Future use of APEX-seq in conjunction with RNA-structure-
mapping methods (Chin and Lécuyer, 2017; Spitale et al.,
2015; Sun et al., 2019), RBP-occupancy atlases (Van Nos-
trand et al., 2016), and massively parallel reporter gene assays
(Lubelsky and Ulitsky, 2018; Shukla et al., 2018) could shed
light on the molecular basis of the spatial organization of
RNA within cells.
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Transmembrane protein annotations (TMHMM) Krogh et al., 2001 http://www.cbs.dtu.dk/services/TMHMM/

Experimental Models: Cell Lines
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HRP-KDEL Kaewsapsak et al., 2017 NotI-IgK-HRP-V5-KDEL-IRES -puromycin-XbaI

CMV promoter IgK is N-terminal signaling

sequence that brings protein to ER

(METDTLLLWVLLLWVPGSTGD). KDEL is

ER-retaining sequence
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SENP2: Sentrin-specific Protease 2

APEX2-NIK3x This study BstBI-EGFP-APEX2-3xNIK-NheI CMV promoter

NIK: Nucleolar targeting sequence from NIK

Software and Algorithms

STAR Dobin et al., 2013 RRID: SCR_015899

t-SNE van der Maaten and

Hinton, 2008

RRID: SCR_016900

HTSeq Anders et al., 2014 RRID: SCR_005514

Bioconductor Gentleman et al., 2004 RRID: SCR_006442

DESeq2 Love et al., 2014 RRID: SCR_015687

Ggplot2 Wickham, 2009 RRID: SCR_014601
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,
Alice Y. Ting (ayting@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mammalian cell culture
HEK293T cells from the ATCC (passages <25) were cultured in a 1:1 DMEM/MEM mixture (Cellgro) supplemented with 10% fetal
bovine serum, 100 units/mL penicillin, and 100 mg/mL streptomycin at 37#C under 5% CO2 (Hung et al., 2016). Mycoplasma testing
was not performed before experiments. For fluorescence microscopy imaging experiments, cells were grown on 7 3 7-mm glass
coverslips in 48-well plates. For qPCR and RNA-seq experiments, cells were grown on 10-cm glass-bottomed Petri dishes (Corning).
To improve the adherence of HEK293T cells, we pretreated glass slides with 50 mg/mL fibronectin (Millipore) for 20min at 37#Cbefore
cell plating and washing three times with Dulbecco’s PBS (DPBS) (pH 7.4).

Generation of HEK293T cells stably expressing different APEX2 constructs
APEX2 fusion constructs in Figure S2A were cloned into pLX304 vector via Gibson assembly. For preparation of lentiviruses,
HEK293T cells in 6-well plates were transfected at !60%–70% confluency with the lentiviral vector pLX304 containing the gene
of interest (1,000 ng), the lentiviral packaging plasmids dR8.91 (900 ng) and pVSV-G (100 ng), and 8 mL of Lipofectamine 2000 for
4 h (Hung et al., 2016). About 48 h after transfection the cell medium containing lentivirus was harvested and filtered through a
0.45-mm filter. HEK293T cells were then infected at!50% confluency, followed by selection with 8 mg/mL blasticidin in growth me-
dium for 7 days before further analysis.

METHOD DETAILS

APEX labeling in living cells
18-24 h after plating HEK293T cells stably expressing the corresponding APEX2 fusion construct, APEX labeling was initiated by
changing the medium to fresh medium containing 500 mM biotin-phenol (Iris Biotech GMBH). This was incubated at 37#C under
5% CO2 for 30 min. H2O2 (Sigma Aldrich) was then added to each well to a final concentration of 1 mM, and the plate gently agitated
for 1 min (Hung et al., 2016). The reaction was quenched by replacing the medium with an equal volume of 5 mM Trolox, 10 mM so-
dium ascorbate and 10mMsodium azide in Dulbecco’s phosphate-buffered saline (DPBS). Cells werewashedwith DPBS containing
5 mM Trolox and 10 mM sodium ascorbate three times before proceeding to imaging, RT-qPCR or RNA-seq experiments. The un-
labeled controls were processed identically, except that the H2O2 addition step was omitted.

Immunofluorescence staining and fluorescence microscopy
Cells were fixedwith 4%paraformaldehyde in PBS at room temperature for 15min. Cells were thenwashedwith PBS three times and
permeabilized with cold methanol at –20#C for 5-10 min. Cells were washed again three times with PBS and blocked for 1 h with 3%
BSA in PBS (‘‘blocking buffer’’) at room temperature. Cells were then incubatedwith primary antibodies (Mouse anti-V5 antibody, Life

Continued
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Barcode trimming Flynn et al., 2016 PMID: 26766114

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

SAMtools Li et al., 2009 PMID: 19505943

Bedtools Quinlan and Hall, 2010 RRID: SCR_006646

Kallisto Bray et al., 2016 RRID: SCR_016582

scikit-learn package Pedregosa et al., 2011 RRID: SCR_002577

PolyA_SVM package Cheng et al., 2006 PMID: 16870936

MultiQC package Ewels et al., 2016 RRID: SCR_014982

rMATS Shen et al., 2014 RRID: SCR_013049

Sleuth Pimentel et al., 2017 RRID: SCR_016883

DEXSeq Anders et al., 2012 RRID: SCR_012823

circlize Gu et al., 2014 RRID: SCR_002141

Other

Detailed APEX-seq library protocol This paper; Fazal et al., 2019 Protocol Exchange https://doi.org/10.21203/rs.2.1857/v1
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Technologies, 1:1000 dilution; Mouse anti-FLAG antibody, Agilent, 1:1000 dilution; Rabbit anti-TOM20 antibody, Santa Cruz
Biotechnology, 1:800 dilution; Rabbit anti-Calnexin antibody, Life Technologies, 1:1000 dilution) in blocking buffer for 1 h at room
temperature. After washing three times with PBS, cells were incubated with secondary antibodies (AlexaFluor488, Life Technologies
1:1000 dilution; AlexaFluor568, Life Technologies 1:1000 dilution; neutravidin-AlexaFluor647, Life Technologies, 1:1000 dilution) in
blocking buffer for 30 min. Cells were then washed three times with PBS and imaged. Fluorescence confocal microscopy was per-
formed with a Zeiss AxioObserver microscope with 60X oil immersion objectives, outfitted with a Yokogawa spinning disk confocal
head, Cascade II:512 camera, a Quad-band notch dichroic mirror (405/488/568/647), and 405 (diode), 491 (DPSS), 561 (DPSS) and
640 nm (diode) lasers (all 50 mW). CFP (405 laser excitation, 445/40 emission), Venus/Alexa Fluor488 (491 laser excitation, 528/38
emission), AlexaFluor568 (561 laser excitation, 617/73 emission), and AlexaFluor647 (640 laser excitation, 700/75 emission) and dif-
ferential interference contrast (DIC) images were acquired through a 60x oil-immersion lens. Acquisition times ranged from 100 to
2,000 ms (ms).

RNA extraction for RT-qPCR or RNA-seq
To labeled and unlabeled (controls) HEK293T cells in 10-cm plates, we added !1 mL DPBS containing 5 mM Trolox and 10 mM so-
dium ascorbate, as well as!4 uL Ribolock RNase inhibitor (Thermo Fischer). The cells were then scrapped off 10-cmplates using cell
lifters (Corning), transferred to 2-mL Eppendorf tubes, and spun at!300G for 4min to pellet cells. The supernatant was removed, and
the RNA was extracted from cells using the RNeasy plus mini kit (QIAGEN) following the manufacture protocol, including adding
b-mercaptoethanol to the lysis buffer. The cells were sent through the genomic DNA (gDNA) eliminator column supplied with the
kit. A modification to the protocol was replacing the RW1 buffer with RWT buffer (QIAGEN) for washing. The extracted RNA was
eluted into RNase-free water, and RNA integrity was checked using the Agilent bioanalyzer 2100 using the RNA pico assay. Only
RNA with a RIN (RNA integrity number) > 8.5 was used for subsequent experiments. RNAs shorter than 100 nt were not efficiently
recovered. RNA concentrations were determined using the Nanodrop (Thermo Fischer).

APEX labeling streptavidin dot blot experiment
RNA from labeled NES-APEX2 (cytosol) HEK293T cells was treated with Turbo DNase (Thermo Fischer) at 37#C for 30 min, followed
by purification using the RNA clean and concentrator"5 kit (Zymo Research).!500 ng of purified RNAwas blotted on the Amersham
Protran 0.45 nitrocellulose (NC) membrane, and the membrane allowed to sit for at least 15 min to allow liquid to dry. The RNA was
crosslinked to the membrane using 2500 mJ energy (254 nm wavelength, UV Stratalinker 2400) (Spitale et al., 2015). The membrane
was then wet with !5 mL PBST (PBS-TWEEN 20), followed by incubation with 15 mL PBST containing 1 mL LI-COR Streptavidin
IRDye 800CW (green). The membrane was washed thrice with PBS and imaged on the LI-COR Odyssey CLX. For the RNase diges-
tion, we treated the RNAwith RNase cocktail enzymemix (Ambion) for 30min at room temperature (RT), followed by purification using
the RNA clean and concentrator kit.

All RNA experiments were carried out using standard protocols to minimize and eliminate RNase contamination. These included
using a dedicated work area for RNA, using filtered pipette tips, wiping all surfaces with RNase Zap (Invitrogen), using certified
RNase-free buffers and reagents, and testing buffers for RNase contamination using RNase Alert (Ambion). When appropriate,
!1-2 mL of Ribolock RNase inhibitor (Thermo Fischer) was added per 100-200 mL of buffer/solution.

Horseradish peroxidase (HRP) in vitro labeling
For in vitro labeling, 100 mg of yeast tRNA extract (Thermo Fischer) were incubated with 500 mM BP, 1 mM H2O2, and 2.25 mM HRP
(Thermo Fischer) in PBS for 1 min. The reaction was quenched by adding a PBS solution with final concentration of 10 mM sodium
azide, 10 mM sodium ascorbate, and 5 mM Trolox. The reaction was cleaned up by the RNA clean and concentrator "5 kit (Zymo
Research). For RNA digestion, 15 mg of labeled RNA was incubated with 2.5 mg RNase A (Thermo Fischer) in total volume 25 mL in
water. After 1 h at room temperature, the reaction was cleaned up by RNA clean and concentrator kit. For proteinase K digestion,
15 mg of labeled RNA was incubated with 50 mg of Protease K (Ambion) in a total volume 25 mL in PBS. After 1 h at 37#C, the reaction
was cleaned up by RNA clean and concentrator kit. 1 mg of RNA was spotted for each condition and then dot-blotted as
described above.

Enrichment of biotinylated RNA
To enrich biotinylated RNAs we used Pierce streptavidin magnetic beads (Thermo Fischer), using 10 ml beads per 25 mg of RNA. In
general, RNA from half a 10-cm plate (!30-50 mg) was sufficient for generating high-quality polyA+ RNA-seq libraries. The beads
were washed 3 times in B&W buffer (5 mM Tris-HCl, pH = 7.5, 0.5 mM EDTA, 1 M NaCl, 0.1% TWEEN 20 [Sigma Aldrich]), followed
by 2 times in Solution A (0.1 M NaOH and 0.05 M NaCl), and 1 time in Solution B (0.1 M NaCl). The beads were then suspended in
!100-150 mL 0.1 M NaCl and incubated with !100-125 ml RNA (diluted in water) on a rotator for 2 h at 4#C. The beads were then
placed on a magnet and the supernatant discarded. Beads were washed 3 times in B&W buffer and resuspended in 54 ml water.
A 3X proteinase digestion buffer was made (1.1 mL buffer contained 330 ml 10X PBS pH = 7.4 (Ambion), 330 uL 20% N-Lauryl sar-
cosine sodium solution (Sigma Aldrich), 66 mL 0.5M EDTA, 16.5 mL 1M dithiothreitol (DTT, Thermo Fischer) and 357.5 mL water). 33 uL
of this 3X proteinase buffer was added to the beads along with 10 ml Proteinase K (20 mg/mL, Ambion) and 3 mL Ribolock RNase
inhibitor. The beads were then incubated at 42#C for 1 h, followed by 55#C for 1 h on a shaker. The RNA was then purified using
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the RNA clean and concentrator "5 kit (Zymo Research). The RNA was typically not bioanalyzed but used as is for downstream
applications.

APEX-seq library preparation
RNA-seq libraries were prepared from enriched RNA (corresponding to !30-50 mg of pre-enriched RNA) using the Illumina TruSeq
stranded mRNA preparation kit, which included polyA+ selection. The prepared libraries were stranded and were quality-controlled
by sequencing on the Illumina MiSeq. Good libraries (> 80% unique reads) were sequenced on the Illumina Hiseq 4000 at!40million
paired (2 3 75) reads per library. The polyA+ libraries (41 ± 2 million paired reads, mean ± SEM) had high mapping in both targets
(90 ± 1% uniquely mapped reads) and controls (86 ± 1% uniquely mapped reads) (Figure S2C). The correlation between biological
replicates was high (between 0.96 and 1). For the MITO APEX-seq we also generated total RNA samples (by omitting the polyA+
selection step in the TruSeq protocol), as well as a polyA+ selected technical replicate for 1 of the labeled samples.

Alternative enrichment strategies tested
We tested alternative strategies to enrich the biotinylated RNAs, and the best one (maximizing enrichment while minimizing material
loss) is described above. In general, we found using harsh reagents such as formamide or urea increased yield variability across rep-
licates while reducing yield.We varied temperature (RT versus 4#C), buffers used to wash beads, and amount and type of beads used
(Pierce streptavidin beads versus Dyna MyOne Streptavidin C1 beads [Thermo Fischer]). Specifically, the protocols tested were as
follows:

(1) Published APEX-RIP protocol/urea wash/high salt wash (Kaewsapsak et al., 2017) – 2 h 4#C incubation – 10 uL Pierce beads
(2) APEX-RIP protocol (excluding urea) – 2 h 4#C incubation – 10 uL Pierce beads
(3) APEX-RIP protocol – 10-15 min RT incubation – 10 uL Pierce beads
(4) APEX-RIP protocol – 2 h 4#C incubation – 10 uL Pierce beads – +2 additional washes of 50% formamide for 15 min at 37#C
(5) High salt wash (described above, B&W buffer) – 15 min at RT – 150 uL Dyna beads
(6) High salt wash – 15 min at RT – 10 uL Pierce beads
(7) APEX-RIP protocol – 2 h 4#C incubation – 50 uL Pierce beads
(8) APEX-RIP protocol – 2 h 4#C incubation – 10 uL Pierce beads – +2 washes 20% formamide for 15 min at 37#C)
(9) High salt wash – 2 h 4#C incubation – 10 uL Pierce beads (finalized protocol)
(10) High salt wash – with 2 h 4#C incubation – 10 uL Pierce beads – + 2 M urea wash
(11) No enrichment controls

Formamide was in 1X SSC buffer (Promega). For APEX-RIP protocol, we used RIPA buffer, 1 M KCl and 2MUrea buffers, following
the APEX-RIP protocol (Kaewsapsak et al., 2017).

APEX RT-qPCR experiments (MITO)
To test for APEX RNA enrichment, we designed primers against positives (MTND1 andMTCO2) and negatives (GAPDH, SSR2, XIST,
FAU). The sequences of the primers (purchased from Elim Biopharmaceuticals) are listed in Table S1.
For the RT-qPCR experiments, the enriched MITO-APEX2 RNA was first reverse transcribed following the Superscript III reverse

transcriptase (Thermo Fischer) protocol using random hexamers as primers (Kaewsapsak et al., 2017). The resulting cDNA was then
testing using qPCR using the primers above in 2X SYBRGreen PCRMaster Mix (Thermo Fischer), with data generated on Lightcycler
480 (Roche). For each RNA we calculated the ratio of RNA recovered in the labeled target relative to unlabeled controls. We then
calculated enrichment as recovery of positives relative to negatives, correcting for primer efficiency (> 85% for all primers).

APEX RT-qPCR experiments (ERM)
To confirm enrichment of known secretory RNAs by ERM APEX-seq, we designed primers against known secretory (SSR2, TMX1
and SFT2D2) and non-secretory genes (FAU, SUB1, MTCO2). The sequences of the primers (purchased from Sigma Aldrich) are
listed in Table S1.
APEX-RIP RT-qPCR experiments with ERM-APEX2 stable cells were performed as described previously (Kaewsapsak et al.,

2017). Briefly HEK293T cells stably expressing ERM-APEX2 were incubated with BP for 30 min prior to 1-min H2O2 labeling.
0.1% (v/v, in PBS) formaldehyde with 10 mM ascorbate and 5 mM Trolox was then added for 10 min to quench the reaction and
crosslink the RNAs to proteins. The crosslinking reaction was terminated by the addition of 125 mM of glycine for 5 min. Following
cell lysis in RIPA buffer, streptavidin beads were used to enrich the biotinylated material for 2 h at 4#C. The crosslinked RNAs and
proteins were then reverse crosslinked before protein digestion with proteinase K. The subsequently purified RNA was analyzed
by RT-qPCR.
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RT-PCR of in vitro 5S RNA to map labeling positions
5S RNA was in vitro transcribed as follows. First, a gBlock Gene Fragments (Integrated DNA Technologies) was purchased with the
human 5S RNA sequence adjacent to an overhang region (underlined):

ATATGCAAGCAACCCAAGTGGTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTGATCTCGGAAGCTAAGCAGGGT
CGGGCCTGGTTAGTACTTGGATGGGAGACCGCCTGGGAATACCGGGTGCTGTAGGCTTT

The DNA was amplified by PCR using Phusion High-fidelity DNA polymerase (NEB) and cleaned up using the QIAquick PCR pu-
rification kit (QIAGEN). The primers used for amplification are listed in Table S1. The DNA template was used to synthesize RNA using
the MEGAscript Transcription T7 Kit (Thermo Fischer), and the transcribed RNA was purified using the MEGAclear kit (Ambion). The
integrity and size of the transcribed RNA was checked by running the products on a 6% native agarose gel, stained with SYBR Gold
(Thermo Fischer), and imaged using Molecular Imaging System (Biorad). All experiments were carried out using replicates. The
labeled RNA was enriched using streptavidin-biotin pulldown as described above, and relative to unlabeled RNA the yield after
enrichment and cleanup was 0.11 ± 0.02 (N = 2), as determined by the Nanodrop (Thermo Fischer).

We prepared labeled reverse primer following the USB Optikinase protocol (Affymetrix) using gamma-32P ATP (Perkin Elmer). We
added 32P end-labeled reverse primer to!100 ng RNA (labeled and controls), and the reaction mixture was heated at 95#C for 2 min
followed by slow cool to 4#C at 10#C/mi, to facilitate annealing of primer (1 mL) to the RNA. The primer extension reaction was then
initiated with reaction mix, as previously described (Lee et al., 2017). Briefly, the reaction mix (20 mL total; 4 mL 5X first strand buffer
(FS), 1 mL 100mMDTT, 1 mL Ribolock inhibitor, 10 mL RNA, and 2 mLwater) was added and themixture preincubated at 52#C for 1min
before adding Superscript III (1 mL; 200 units, Invitrogen). Separately, similar reactions were carried out spiking in dATP with ddATP
(dideoxyadenosine), and dCTP with ddCTP (dideoxycytidine), as described (Lee et al., 2017). Primer extension was carried out at
52#C for 30 min, after which the reaction was stopped by heating to 95#C for 5 min, followed by cooling to 4#C. The RNA was
then hydrolyzed using NaOH (4M; 1 mL) and heating to 95#C for 5 min.

To the cDNA, Gel Loading Buffer II (10 mL; Invitrogen) was added, and the products run on a 35-cm long denaturing 8% polyacryl-
amide gel with 7M Urea (Thermo Fischer) (Lee et al., 2017). The resulting gel was dried (Labconco Gel Dryer) after placing it on What-
man paper (Sigma Aldrich) and exposed to a storage phosphor screen (Molecular Dynamics) for!24 h, and then visualized by phos-
phorimaging (STORM,Molecular Dynamics). The lanes containing ddATP (corresponding transcribed RNA nucleotide U) and ddCTP
(corresponding transcribed RNA nucleotide C) were used to determine the position of all RT stops. RNA secondary structures were
predicted using mFOLD software (Zuker, 2003). The gel analysis was carried out using ImageJ (Schneider et al., 2012).

Liquid-chromatography (LC)-mass-spectrometry (MS) characterization of in vitro reaction products
2 mM dG (Sigma Aldrich) was incubated with 100 mM pentachlorophenol (PCP, Sigma Aldrich) or BP in PBS at 37#C for 1 h in the
presence of 2.25 mM HRP or APEX2 and 100 mM H2O2. The reaction was diluted with water to final volume 100 mL and injected
into an LC-MS with Zorbax Poroshell 120 SB-C18, 2.1 3 50 mm 2.7 u column with Poroshell 120 SB-C18 2.1 3 5 mm 2.7 u guard
column. The gradient for LC is shown in the table below. Mass was determined by single quadruple mass spectrometry with positive
and negative atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) modes for M/Z = 20-2000.

Mapping and visualizing APEX-seq data
The RNA-seq libraries generated weremapped to the genome rather than to annotated transcriptome, so we could investigate intron
retention. The RNA-seq reads were initially subject to barcode removal and primer trimming using a published script (Flynn et al.,
2016) based on Trimmomatic (Bolger et al., 2014): (https://github.com/qczhang/icSHAPE/blob/master/scripts/trimming.pl):

perl trimming.pl "1 $fastq-file1 "2 $fastq-file2 -p $trimmed-file1 -q $trimmed-file2 -l 0 -t 0 -c phred33 -a adaptor.fa -m 36

Time (min) Flow (mL/min) % solvent A % solvent B

0 0.3 98 2

2 0.3 98 2

6 0.3 5 95

8 0.3 5 95

8.5 0.3 98 2

9.5 0.3 5 95

10.5 0.3 5 95

11 0.3 98 2

15 0.3 98 2

Solvent A = 0.1% formic acid in water. Solvent B = 0.1% formic acid in acetonitrile.
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The reads were then mapped using STAR (Dobin et al., 2013; Dobin and Gingeras, 2015) to the GRCh38 Ensembl genome, with
Homo_sapiens.GRCh38.84.gtf annotations (http://uswest.ensembl.org/index.html), using the following command::
STAR–genomeDir !/genome/human/star–runThreadN 8–readFilesIn $trimmed-file1 $trimmed-file2–outFileNamePrefix $output-

samfile
The mapped reads were then counted using HTSEQ (Anders et al., 2014):
python -m HTSeq.scripts.count -m intersection-nonempty -s reverse -i gene_id $output-samfile !/genome/human/Homo_

sapiens.GRCh38.84.gtf > $txt
The mapped data was visualized using the UCSC browser track (Kent et al., 2002). To generate genome tracks we used samtools

(Li et al., 2009) to generate stranded BAM files for each library from the SAM file. The BAM file was then used to generate a bedGraph
following the command:
genomeCoverageBed -bg -split -ibam $bam -g !/genome/human/star/chrNameLength.txt > $bed_file
BedGraph files from multiple replicates were aggregated using bedtools (Quinlan and Hall, 2010) unionbedg and each track was

normalized to the same sequencing depth (30 million reads each). The averaged bedGraph files were converted to BigWig files using
command bedGraphToBigWig (Kent et al., 2010) for visualization in the UCSC browser (Karolchik et al., 2004). Statistics from the
mapped data was aggregated using MultiQC (Ewels et al., 2016). To calculate FPKM (fragments per kilobase per million reads),
we obtained transcript lengths from Biomart Ensembl (Durinck et al., 2005) (Ensembl Genes 92, GRCh38), using the longest stable
isoform for a gene as its length.

Transcript-level quantification
Kallisto (Bray et al., 2016) (v 0.43.1) was used to quantify transcript-level abundances of the APEX-seq libraries. A fasta file corre-
sponding to Homo_sapiens.GRCh38.89.gtf and hg38was downloaded from the Ensembl website and a kallisto index was generated
using the kallisto index command with default arguments. To quantify each pair of fastq files, the kallisto quant command with the -b
30 argument was used.

Data analysis using DESeq2
Differentially-expressed genes were determined using DESeq2 (Love et al., 2014), using FDR < 0.05 and 18 controls. We tested the
effect of imposing other FDR (false discovery rate) cutoffs, and found no appreciable increasing in precision with further decreasing
FDR to 0.01. However, increasing FDRbeyond 0.05 dramatically decreased precision. All P values fromDESeq2 are FDR adjusted for
multiple-hypothesis testing.
For theOMMperturbation experiments, we used the same 18-control strategy, but replacing the unperturbedOMMAPEX-seq and

cytosol APEX-seq values with the corresponding drug-perturbed values. Using a strategy where we only had 4 controls per pertur-
bation experiments (2 OMMunlabeled and 2 cytosol unlabeled) did not appreciably change the conclusions. For the nocodazole time
course experiment we used controls generated at 3 min treatment to calculate enrichment values for the 3 min and 6 min target
libraries, and controls generated at 30 min treatment for the 9 min, 30 min and 2 h target time points.
There were two exceptions to the 18-control approach in all our analysis. For the LMA gene in nuclear lamina, and the SENP2 gene

in the nuclear pore construct, the unlabeled control had high counts for these genes in the RNA-seq data, as these genes were used
to target APEX2 to the corresponding location. Therefore, to compensate, we replaced the LMA 18-control DESeq2 log2fold-change
with the 2-control log2fold-change (using LMA controls) in the LMA data; we did the same for SENP2 in the nuclear pore dataset.
Otherwise, all other data was as is. As the default DESeq2 approach (Love et al., 2014) replaces outliers when there are > 7 replicates,
with our 18-control experiment we didn’t need to change the corresponding DESeq2 values of sub-compartments other than nuclear
pore and nuclear lamina.

Generating Orphan Lists
The orphan lists in Figure 2F include candidates from 7 locations – ERM, OMM, nucleus, nuclear lamina, nuclear pore, nucleolus and
cytosol. We did not find any significantly-enriched transcripts in the KDEL, so no RNAs from this location were included in the orphan
list. To generate the ERM and OMM orphan list, we started with the 1077 and 1027 enriched transcripts in ERM and OMM respec-
tively and excluded all secretory genes. To generate the nucleus and cytosol orphan lists we started with the enriched genes from the
atlas analysis (Figure 3D), and excluded all genes that were known to be enriched in these locations based on published fractionation-
seq data fromHEK293 (rRNA-depleted) (Sultan et al., 2014). For the fractionation-seq data the corresponding files were downloaded
from the European Nucleotide Archive (accession number PRJEB4197), and processed identically to the APEX-seq fastq files. To
validate nucleus and cytosol orphans, we carried out our own nuclear/cytosol fractionation, but using polyA+ selection and making
RNA-seq libraries identically to the APEX-seq libraries.
To generate the nucleolus, nuclear pore and nuclear lamina orphan lists, we started with the genes from the atlas analysis and

included genes that were highly-enriched in the location (log2foldchange > 0.75) relative to nucleus APEX-seq.

FPKM data sources
To obtain FPKM (reads per kilobase per million reads) of genes, we used two sources. First, we used published polyA+ data (Sultan
et al., 2014) by averaging data from two protocols (Qiaquick and Trizol). The corresponding fastq files were downloaded from the
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European Nucleotide Archive (accession number PRJEB4197), and processed identically to the APEX-seq fastq files. Second, we
estimated FPKM from the raw counts from our 18-control samples. Briefly we calculated the FPKM for each control sample and
averaged the FPKM values from all 18 controls. As the RNA-seq reads from unlabeled samples were obtained after treatment
with streptavidin beads, these FPKM values might suffer from sequence- or length-dependent biases. However, genome-wide
we found the data to be highly-correlated (r = 0.95) with the published data (Sultan et al., 2014). For the correlation analysis, we
considered FPKM > 1. For all analyses that used FPKM values, we also only considered genes with FPKM > 1.

ERM APEX-seq extended analysis
We extensively tested the ERMAPEX-seq dataset against the published ER fractionation (Reid and Nicchitta, 2012) and ER-proximal
ribosome profiling (Jan et al., 2014) datasets. Briefly the ERM APEX-seq log2fold-changes were cytosol normalized by subtracting
the corresponding cytosol (NES) log2fold-change. This ratiometric normalization increased specificity for challenging sub-compart-
ments (Figures S2I) and is routinely used for APEX proteomics analysis (Hung et al., 2014). To test the specificity and sensitivity of
ERM APEX-seq, we used receiver-operator-curve (ROC) (Linden, 2006).For the true positive list to test against, we considered
the!640 ER-enriched transcripts by ribosome profiling (log2fold-change > 0.904, as determined by authors), and the false positives
were non-secretory RNAs – these were genes not in Phobius (Käll et al., 2004), SignalP (Petersen et al., 2011) and TMHMM (Krogh
et al., 2001). In conjunction with our data, we also examined ER ribosome profiling data using ROCs, including transcripts with total
RPKM > 10, as recommended by authors. From the ROC analysis, the cutoff was the value that maximized the difference between
the true positive rate (TPR) and false positive rate (FPR). For ERM APEX-seq we explored different analysis approaches, including
using 2-controls (ERM APEX-seq controls), 4-controls (ERM and cytosol APEX-seq controls) and 18-control samples. We also
explored including or excluding ratiometric normalization (i.e., cytosol normalization to reduce background). We finally settled on
the 18-control condition based on high specificity and reasonably-high coverage (>1,000 enriched genes). For this 18-control exper-
iment, DESeq2 log2fold-change values from cytosol APEX-seq were subtracted from ERM APEX-seq to obtain ratiometric normal-
ization (ERM/cytosol), and a final cutoff of log2fold-change (ERM/cytosol) > 0.8725 was obtained from the ROC. Unlike the published
studies (Jan et al., 2014; Reid and Nicchitta, 2012), we didn’t need to use CHX to stabilize transcripts.

Our analysis suggested improved performance (i.e., specificity) when combining replicates, especially when dealing with
challenging/open sub-compartments. As few as 4 controls can improve performance. However, combining controls from multiple
constructs/experiments is typically unnecessary when dealing with closed sub-compartments such as the nucleus, cytoplasm or
mitochondrial matrix.

To compare the abundance of transcripts recovered by ERM APEX-seq, ER fractionation and ER ribosome profiling, we used a
published HEK293 polyA+ RNA-seq dataset (Sultan et al., 2014). To estimate the coverage of our ER datasets, we chose a reference
gene list comprising of 71mRNAs that encode ER resident proteins, as previously described (Kaewsapsak et al., 2017). For the com-
parison of coverage with ERM proteomics, we used the published dataset containing gene names (Hung et al., 2017).

Nucleus (NLS) APEX-seq extended analysis
To validate the NLS APEX-seq orphans we carried out nuclear fractionation of HEK293T cells by following an established protocol
(Gagnon et al., 2014). The protocol uses a detergent nonidet P40 (NP-40) to separate ER contaminants from the nucleus, and we
confirmed this strategy was effective by imaging isolated nuclei, staining for ER using ER tracker Red (BODIPY TR Glibenclamide –
Thermo Fischer), and visualizing on fluorescence microscope (Zeiss Observer Z1). We modified the protocol so that the extracted
RNA was not purified by trizol extraction, but rather by using the RNeasy plus mini kit (QIAGEN). RNA-seq was carried out using
the same protocol as that used for APEX-seq, thereby generating polyA+ libraries for the nuclear and cytoplasmic fraction using Il-
lumina TruSeq kit. All experiments were carried out in biological replicates.

To estimate precision and accuracy of NLS APEX-seq, we used our polyA+ fractionation-seq data to generate true-positive
and false-positive lists. We did so by first obtaining transcripts differentially expressed in the nuclear relative to cytoplasmic fraction
(pFDR-adjusted < 0.05), and did the same for nucleus (NLS) APEX-seq versus cytosol (NES) APEX-seq. We categorized transcripts into
the following categories (Figure 2G): (1) log2fold-change NLS > 0 and log2fold-change (nuclear/cytosolic fractionation) > 0 (true pos-
itive; TP), (2) log2fold-change NLS > 0 and log2fold-change (nuclear/cytosolic fractionation) < 0 (false positive; FP), (3) log2fold-
change NLS < 0 and log2fold-change (nuclear/cytosolic fractionation) > 0 (false negative; FN), (4) log2fold-change NLS < 0 and
log2fold-change (nuclear/cytosolic fractionation) < 0 (true negative; TN). Precision was defined as TP/(TP+FP), accuracy as
(TP+TN)/(TP+TN+FP+FN), sensitivity as TP/(TP+FN), and specificity as TN/(TN+FP). Transcripts shorter than 100 nt were excluded
from analysis. We calculated precision and accuracy for all transcripts, as well as for ER-transcripts (those enriched by ERM APEX-
seq) and non-ER transcripts. Other analysis approaches (using other log2foldchange cutoffs, making receiver-operator-curves etc.)
did not change the main conclusions.

OMM APEX-seq extended analysis
For OMMAPEX-seq data in Figures 6 and 7, a similar ratiometric normalization to ERMwith cytosol was carried out. Based on exten-
sive testing with ERMAPEX-seq and nucleus APEX-seq using the corresponding known gene-lists, we found that in general a default
log2fold-change cutoff of 0.75 was suitable for dealing with APEX-seq when prior knowledge was unavailable, or un-assumed. We
therefore used log2fold-change (OMM/cytosol) = 0.75 as a cutoff to identify OMM-enriched transcripts.
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For labeling secretory RNAs (Figure S3D), we identify and display secretory RNAs in this order (1) first all Phobius, (2) TMHMM but
not Phobius, (3) SignalP but not Phobius or TMHMM (4) Gene ontology cellular component (GOCC) but not Phobius, TMHMM or
SignalP. Mitocarta2.0 were excluded from secretory RNA (own category).

Mitochondria drug perturbation
For cycloheximide treatment, APEX labeling in OMM-APEX2 stable cells was initiated by changing themedium to fresh medium con-
taining 500 mM biotin-phenol. This was incubated at 37#C under 5%CO2 for 15 min. Then cycloheximide (Sigma Aldrich) was added
to the medium to a final concentration of 0.1 mg/mL and the cells were further incubated at 37#C under 5% CO2 for another
15 min. H2O2 was then added to each sample to a final concentration of 1 mM, and the plate gently agitated for 1 min. Then the sam-
pleswere quenched and processed the sameway as other APEX-seq samples. For puromycin or CCCPexperiment, APEX labeling in
OMM-APEX2 stable cells was initiated by changing the medium to fresh medium containing 200 mM puromycin (VWR) (or 40 mM
CCCP [Sigma Aldrich]) and 500 mM biotin-phenol. This was incubated at 37#C under 5% CO2 for 30 min. H2O2 was then added
to each sample to a final concentration of 1 mM, and the plate gently agitated for 1 min. Then the samples were quenched and pro-
cessed the same way as other APEX-seq samples.
For the nocodazole experiments, we added 10 mMnocodazole (Sigma Aldrich) to freshmedia and incubated cells for 3, 6, 9, 30 and

120min 37#C under 5%CO2, followed by 1min labeling by adding H2O2 at room temperature to a final concentration of 1mM. Biotin-
phenol was added to the media 30 min prior to labeling. Samples were quenched and processed the same way as other APEX-seq
samples.

OMM perturbation data analysis
For gene classification, mitochondrial genes were annotated according to MitoCarta 2.0 (Calvo et al., 2016); secretory genes were
annotated as in Kaewsapsak et al. (2017) according to Phobius, SignalP, TMHMM, GOCC and ER proximity ribosome profiling. For
mitochondrial genes, we adapted the original TargetP algorithm prediction score (0 = no targeting sequence, 1-5 from strongest to
weakest) to a different scale (0 = no targeting sequence, 1-5 from weakest to strongest) as a metric of the strength of N terminus
mitochondrial targeting sequence. The mitochondrial gene functional classes were annotated according to Gene Ontology and
are listed in Table S4. For the gene density plots in Figures 6B and 6C, all detected transcripts in each condition were plotted by their
log2fold-change normalized against their respective cytosol control using a bin size of 0.2. For the functional class analysis in Figures
6F and 6G, the top 100 enriched mitochondrial genes in each experiment were selected based on MitoCarta 2.0 for mitochondrial
annotation and log2fold-change of OMM values normalized against their respective cytosol control.
To calculate nocodazole half-lives the non-linear regression function nls in R was used. We excluded transcripts with half-lives

shorter than 0.5min, and longer than 60min as thesewere not reliable.Weobtained half-lives for 461 of the 768 transcripts in Cluster 2
(Figure 7K).

Empirical classification of OMM-localized transcripts as ribosome- or RNA-dependent
OMM-enriched transcripts from the heatmap (N = 1902, Figure 6M) who abundance increased with cycloheximide treatment and
decreased with puromycin treatment were considered to be ribosome-dependent. In contrast, transcripts whose enrichment at
the OMMwas largely unchanged following puromycin or cycloheximide treatment were considered to localize in an RNA-dependent
manner. The separation of these two populations of RNAs is shown in Figure 7A.

Prediction localization to the OMM versus ERM
If RNA-dependent transcripts localize based on their RNA sequence, and ribosome-dependent transcripts localize based on their
protein sequence, a prediction that follows is that the RNA sequences of RNA-dependent transcripts are somehowmore distinguish-
able from non-OMM-localized transcripts than ribosome-dependent transcripts. In other words, if cellular machinery recognizes the
sequence of RNA-dependent transcripts and their RNA sequences are sufficient for RNA localization, then the localization to the
OMM, as opposed to another cellular destination, should be more predictable based on RNA sequence for these transcripts relative
to ribosome-dependent transcripts. We therefore hypothesized that amachine learning classifier would bemore able to classify tran-
scripts as being OMM-localized or ERM-localized when comparing ERM-enriched transcripts to ribosome-dependent transcripts,
than when comparing ERM-enriched transcripts to protein-dependent transcripts. The ERM was chosen as a dataset to compare
with as the ERM and OMM are physically proximate in cells, and both localizations where translation occurs.
To test this hypothesis, we used a random forest model to classify transcripts as being OMM- or ERM-localized. Broadly, training

inputs were a list of transcripts and their empirical classification (OMM or ERM), and test inputs were a list of withheld transcripts
whose predicted classification (OMM or ERM) was compared with their empirical classification. Model performance was compared
when using OMM RNA-dependent transcripts and ERM transcripts, versus OMM ribosome-dependent transcripts and ERM
transcripts.
OMM RNA-dependent and ribosome-dependent gene lists were identified as described above. ERM-localized genes were iden-

tified based on: log2FC enrichment > 0.75, adjusted p value < 0.05, and log2FC enrichment in ERM> log2FC enrichment in OMM. Any
genes in the ERM list that were also present in the OMM lists were excluded (from both lists), such that only uniquely localized genes
were included for classification. The most abundant transcript isoform in the control samples was used as the primary transcript

Cell 178, 473–490.e1–e13, July 11, 2019 e9



whose sequence was used for downstream analysis. Transcript sequences were converted into kmer counts by 1) generating a list of
all possible kmers of a given k, 2) counting the number of times that kmer was present in a given transcript sequence, and 3) normal-
izing the kmer counts for a given transcript by the length of that transcript (i.e., this results in the relative per-transcript abundance of
all possible kmers). For comparisons based on RNA-localization (Figure 7B), a k of 6 was used, resulting in 4096 (4̂6) possible kmers.
When comparing the sequences of only UTRs or CDS, only transcripts containing a 50UTR/CDS/30UTR sequence of at least length 10
were used.

The ensemble.RandomForestClassifier in the Python scikit-learn package (v 0.20.0) was usedwith default settings, with the excep-
tion of: n_estimators = 100,max_features = 4096,min_samples_split = 15,min_samples_leaf = 15. 10-fold cross-validation was used.
ROC curveswere generated using the ensemble.RandomForestClassifier.predict_proba() andmetrics.roc_curve() functions in scikit-
learn. Mean ROC curves are shown, with shaded areas indicating one standard deviation.

To test the hypothesis that OMM ribosome-dependent transcripts should bemore predictive based on their protein sequence than
OMMRNA-dependent transcripts, the above procedure was also performed using the protein sequences of ERM-localized, OMMP,
and OMMR transcripts. Only protein-coding transcripts were used. As there are a greater number of possible amino acid kmers (22k)
than nucleic acid kmers (4k), a k of 3 was used, and only kmers found at least twice across all protein sequences (in any one of the
three lists) were included in downstream analyses. The use of a smaller k and/or the greater number of possible amino acid se-
quences, in addition to potential biochemical similarities between certain sets of amino acids (e.g., hydrophobic amino acids) which
may be biologically similar but are not explicitly included in our model, may contribute to lower performance relative to classification
based on RNA sequence. As protein-dependent localization would be predicted to be primarily dependent on the N-terminal amino
acids, as these are the amino acids displayed during nascent peptide synthesis, only the first 100 N-terminal amino acids were used.
Proteins whose sequences were shorter than 40 amino acids were excluded. The restriction to the 100 N-terminal amino acids is
consistent with and based on the methods used by other signal peptide prediction programs (i.e., TargetP).

Random forest classification of OMM transcripts as RNA-dependent or ribosome-dependent
To validate the random forest model classification of OMM-localized transcripts as being RNA-dependent or ribosome-dependent
(P transcripts), the ensemble. RandomForestClassifier was used as described previously (with the same settings) and 10-fold cross-
validation (Figure 7D). Subsequently, to determine relative kmer importances, the entire dataset of RNA-dependent and Ribosome-
dependent transcripts (with no transcripts withheld) was used to train the model (using per-transcripts length-normalized 6-mer
counts of all 4096 6mers). Feature importances were normalized to the maximum feature importance. These 6-mer importances
were then projected onto transcript sequences for all three gene lists (with overlapping genes not withheld), to identify the relative
importance of transcript 6mers as a function of the position along the length of the transcript (i.e., to determine whether there exists
a positional bias, such as 50 or 30 bias, in the part of the transcript most important for predicting RNA localization). To generate the
relative importances, 1) the per-base importance of each transcript was initialized to 0, 2) transcripts were broken into consecutive
6mers, 3) the feature importance of each 6-mer was added to the 6 corresponding bases of the RNA transcript, to result in a per-base
importance for each transcript. This was then normalized for each transcript to the maximum per-base importance, such that the
values for each transcript range from 0 to 1. A sliding average window of 20-bases was used and the resulting importances were
then normalized based on transcript length to create the metaplot shown in Figure S7B, such that the position importances for
each transcript ranged from 0 (representing the 50 end of a transcript) to 1 (the 30 end of a transcript).

PolyA score prediction and polyA-tail length
The polyA_SVM package (v.2.2) (Cheng et al., 2006) was used to compute predicted polyadenylation site scores for all transcripts
using default settings. The maximum predicted score for each transcript was used. If no predicted score was returned (i.e., the
polyA_SVM package did not predict the presence of a polyA site), then a score of 0 was used. The sequences of the three respective
gene lists (ERM-localized, OMM RNA-dependent transcripts, and OMM ribosome-dependent transcripts) generated as described
previously were used, and overlapping transcripts (found in both the ERM and OMM lists) were not excluded. The polyA tail length
data was obtained from GSE52809 (Subtelny et al., 2014).

Correlation and T-distributed stochastic neighbor embedding (t-SNE) analysis
For the 9-location correlation and t-SNE (van der Maaten and Hinton, 2008) analysis we only included genes with average counts per
sample greater than 100 across all 36 samples (2 labeled targets and 2 unlabeled controls per location). We excluded genes with
transcript length less than 100 nt. The raw counts from HTSEQ were rlog-transformed using DESeq2-normalized counts. Pearson
correlation on the transformed counts was carried out using the package corrplot in R, using clustering method ‘‘centroid’’ and order
‘‘hclust.’’ t-SNE analysis was also performed in R. For the targets-only t-SNE we included genes with average counts per sample
greater than 1000 across all 18 samples (2 labeled targets per location).

For theOMMdrug-treatment experiments, we only included genes average counts greater than 100 per sample across 32 samples
(2 labeled targets and 2 labeled controls for the following: OMM_basal, OMM_cycloheximide, OMM_puromycin, OMM_cccp,
cytosol_basal, cytosol_cycloheximide, cytosol_puromycin, cytosol_cccp). All other analyses were carried out identically to the
9-location analysis.
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Heatmap and gene-ontology (GO)-term analysis
For the integrated analysis of locations, we excludedMITO APEX-seq as the labeled targets perturbed the entire analysis; we believe
this is due to the large enrichment of!13 mitochondrial mRNAs and 2 rRNAs, which constitute over 50% reads in targets; combined
with the relative spatial isolation of the matrix.
To generate reliable gene data for the integrated analysis, we took our APEX-seq enrichment data and imposed the following

filtering criteria: (1) excluding transcripts shorter than 100 nt that were not recovered efficiently. (2) Considering transcripts with com-
mon gene names (typically HUGOgene nomenclature committee [HGNC] approved names; Maglott et al., 2011; Pruitt et al., 2007) (3)
only including genes that were enriched in at least 1 location (pFDR-adjusted < 0.05 and log2fold-change > 0.75 for at least 1 location);
and (4) Genes had log2fold-change data estimated from DESeq2 for all locations (i.e., excluding any genes with NA values in any
location). This last filtering step typically excluded low-abundant transcripts that might occasionally show up as enriched in a location
but didn’t have sufficient counts in other locations. Such low-abundant transcript-data was typically less reliable. We did not impose
any FPKMor counts cutoff in our analysis. Our analysis yielded 3262 genes, shown in Table S3. As the fold changes in this study were
calculated relative to unlabeled controls, enrichment by APEX-seq is a proxy for transcript concentration. Thus, the cytosol, which
constitutes most of cell, recovers fewer transcripts than expected, as it is not possible to highly concentrate transcripts there.
Heatmaps of this data were generated using pheatmap2 in R, with default settings. From the heatmap, clusters were estimated

using hierarchical clustering. The cluster number was checked using a number of approaches including gap statistics (Tibshirani
et al., 2001), and the combined cluster range was then explored. The genes belonging to each cluster was then compared to all en-
riched genes to estimate cellular GO-terms. GO-term analysis was carried out using PANTHER (Mi et al., 2013; Thomas et al., 2003)
(http://pantherdb.org/about.jsp), using Fischer’s exact test with FDRmultiple test correction. We only consider GO-termswith FDR <
0.005. To construct the heatmaps of most variable mRNAs (Figure 3E), we considered genes with average counts > 1000. For the
lncRNA heatmap (Figure 3F), we excluded all genes that were not lncRNAs, processed transcripts and pseudogenes.
We took a similar approach for making heatmaps was used for the OMM analysis with the drug perturbations (puromycin, CCCP,

cycloheximide). However, for clustering we did not use CCCP data. For the subsequent GO-term analysis we used the Reactome
pathway from PANTHER, with the control set comprising all genes enriched in at least one of the 4 OMM APEX-seq conditions
(!1900 genes).

Nuclear-locations m6A modification and length analysis
To examine transcript-length differences across the nuclear locations (nucleus, nucleolus, nuclear pore, nuclear lamina), we filtered
genes as described above for the heatmaps, but we excluded the filtering step by common gene names. Our analysis yielded 3288
genes. We obtained transcript lengths from two sources: (1) The longest stable isoform, as obtained from Biomart, Ensembl (Durinck
et al., 2005), and (2) themost-abundant isoform across all compartments in our APEX-seq data, as determined by rMATs (Shen et al.,
2014). Using the transcript length from either of these databases yielded similar trends and conclusions.
To determine the contribution of 50 UTR, CDS (coding sequence) and 30 UTR to the overall transcript-length difference between

nucleus- and nuclear-pore enriched transcripts, we considered the most-abundant isoform, but excluded non-coding transcripts
(i.e., transcripts with a CDS length = 0).
To calculate the number of m6A sites per transcript, we used a published dataset to obtain high-confidence m6A sites in HEK293

(Meyer et al., 2012).

Network analysis
RNA interactions for the 3262 genes were investigated in multiple ways. These include (1) tabulating the overlapping genes using
UpSet (Lex et al., 2014) in R; and (2) using circlize (Gu et al., 2014) to investigate the data by comparing which transcripts in each
cellular sub-compartment most often had residency in other locations. In all instances the fold change for all genes for all transcripts
was binarized to either 1 (log2fold-change > 0.75), else 0.

Lamin-associated domains (LADs) and nucleolus-associated domains analysis
For the LADs and NADs analysis, we aggregated data from the following sources to obtain the relevant associated genomic regions:
Guelen et al. (2008), Dillinger et al. (2017), Németh et al. (2010). We used library ((TxDb.Hsapiens.UCSC.hg18.knownGene) in R,
obtained from Bioconductor (Durinck et al., 2005; Gentleman et al., 2004) to get the genes contained within these regions.

Quantification of intron retention and intron switching
rMATS (Shen et al., 2014) was used to quantify intron retention in each location. rMATS was run by comparing the APEX-seq BAM
files against all controls using the arguments -t paired, and a GTF file downloaded from Ensembl (Genecode v26, Ensembl 88). Only
retained intron events with FDR % 0.05 were considered using the ‘‘RI.MATS.JCEC.txt’’ output file (using both junction and exon
counts).
rMATs (v 4.0.1) was used to quantify the number of isoform-switching genes (Figures S5F and S5G) in the APEX-seq labeled

samples relative to all unlabeled controls. The number of significant differential-splicing events (FDR < 0.05) for each compartment
was read from the rMATs JCEC files. To remove noise from low-abundance transcripts, the KDEL labeled sample was used as a filter.
Any differential splicing events identified in the KDEL labeled samples were ignored, as previous analysis using DESEQ2 found no

Cell 178, 473–490.e1–e13, July 11, 2019 e11

http://pantherdb.org/about.jsp


significantly-enriched genes at that location. The number of genes containing at least one differential splicing event between a
labeled compartment and unlabeled controls are reported for the respective alternative splicing event.

Isoform analysis, including isoform switching
Sleuth (Pimentel et al., 2017) was used to perform differential transcript expression analysis between locations, which were
compared against all control samples. For the analyses in identifying isoform switching, to generate gene-level abundances the Bio-
conductor (Gentleman et al., 2004) tximport package was used to import kallisto (Bray et al., 2016) abundances and aggregate to the
gene-level. DESeq2 (Love et al., 2014) was subsequently used to perform differential gene expression analysis. Genes that displayed
isoform switching were identified as follows: First, using the differential gene expression output from DESeq2, genes displaying no
significant differential expression between the nucleus (NLS) and cytosol (NES) samples were identified. For each of these genes, we
then determined if there were any transcripts that were significantly enriched in either the nucleus or cytosol samples (as determined
by Sleuth [Pimentel et al., 2017]). Genes displaying no differential expression between the nucleus and cytosol, but with at least one
transcript enriched in the nucleus and a different transcript enriched in the cytosol, were called as displaying isoform switching. To
select genes to display in Figure 5E, an expression cutoff (at the gene level) of log2counts > = 12 and an isoform difference metric > =
10was set. The isoform differencemetric was computed by taking the sumof the absolute values of the log2fold-change enrichments
for the most cytosol-biased and most nuclear-biased transcript.

Repeat analysis
A list of all annotated repeat elements was downloaded from UCSC Table Browser (Karolchik et al., 2004). To determine the relative
enrichment of repeat elements in the genes enriched in each location, a set of enriched genes in each location was determined as
described previously (log2fold-change > = 0.75, pFDR-adjusted < 0.05). A unique set of genes for each location was determined by
removing genes that were enriched in more than one APEX-seq location.

For each set of genes, a corresponding list of genomic coordinates comprising only exonic sequences was generated. The most
abundant isoform of each gene was used for determining the coordinates of the exons. This list was then intersected with the repeat
annotation using bedtools (Quinlan and Hall, 2010) intersect with the -F 0.51 command to require that at least half of the repeat anno-
tation was present in an exonic sequence. This was then aggregated by gene to generate a ‘‘repeat count’’ by gene table (with all
repeat families as rows, and all genes uniquely enriched in a given location as columns). This table was then binarized to result in
a table reporting the presence or absence of a repeat element in each gene. The proportion of genes in each location that contained
a given repeat family was then determined. To perform FDR calculations, the gene-location pairings were randomly permuted 1000
times, and the number of permutations inwhich the resulting enrichment valuewas at least as great as the observed enrichment value
was divided by the total number of permutations.

To quantify the abundance of rRNA repeat elements, the same list of all annotated repeat elements from UCSC (Karolchik et al.,
2004) was used (typical size 102 – 103 bp). The number of readsmapping to any rRNA element for each location was determined using
bedtools intersect, essentially using the rRNA repeat annotations as a ‘‘gene’’ or ‘‘feature’’ to quantify overall abundance. These
values were depth normalized to the total number of aligned reads in each BAM file, and averaged across replicates.

Sequential fluorescence in situ hybridization (FISH) design and analysis
Sequential oligo library for 56 selected genes, which include a combination of known and previously-unknown-location genes, was
designed according to Moffitt and Zhuang (2016) and synthesized by CustomArray. The library was then PCR amplified using Phu-
sion Hot-start Master Mix (NEB, M05365) and then cleaned up using DNA clean and concentrator "5 columns (DCC-5, Zymo
Research, D4013). The library was then in-vitro transcribed with T7 polymerase using the HiScribe kit (NEB, E20505) at 37#C over-
night. The resulting RNA was then reverse transcribed with Maxima HMinus RT enzyme (ThermoFisher, EP0751) at 50#C for 1 h and
the remaining RNA digested with 0.25 M EDTA and 0.5 M NaOH at 95#C for 10 min. The correct size of the reverse transcribed RNA
was confirmed by running the product on a 15% urea TBE gel. The probes were further cleaned up using DCC-25 columns (Zymo
Research, D4005).

To hybridize FISH probes on to cells, HEK293T cells were fixed with 4%paraformaldehyde (PFA) in PBS for 10min before permea-
bilized with 0.5% Triton-X in PBS for 10 min. The sample was then incubated in 50% formamide and 0.1% TWEEN 20 in 2X SSC
solution for 35 min. 500-800 ng/mL of the synthesized probe were added onto the cells using a coverslip and the slides were dena-
tured at 90#C for 10 min. Probes were hybridized overnight at 42#C in a humidified chamber. The cells were then washed twice with
prewarmed 42#C 2XSSC solution for 10 min the next day before imaging on a confocal microscope. A total of 14 fields of view, each
with > 20 cells, were imaged for all 56 genes and then the data were processed using MATLAB. Using the FISH images generated for
each demultiplexed transcript, we subsequently excluded transcripts that (1) could not be decoded based on the barcode, or (2) that
didn’t show any localization (typically low-abundant ones) based on the images being hazy and lacking punctate spots. To carrying
out this exclusion in a relatively unbiased manner, we had 3 people (F.M.F., S.H., K.R.P.) independently examine the images for all
genes, and rate transcript-localization information as (1) high confidence (2) medium confidence and (3) low/no confidence. We then
tallied all these ratings and subsequently excluded transcripts that were assigned a ‘‘no confidence’’ value by any of the 3 people. In
general, the 3 people strongly agreed on the confidence ratings. We separately also confirmed that for transcripts with known local-
ization, the discarded genes did not correlate well with known localizations. For imaging quantitation and analysis of each field of
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view, we generated a mask for each individual gene of interests using a uniform threshold cutoff of 0.5 – 0.998 after removing all the
non-cell pixels. The colocalization withMTND3 was calculated by intersecting the mask of a particular gene of interest (for example,
‘‘XIST’’ mask) with MTND3 mask and then divided sum intensity of the intersected mask by the sum intensity of the gene mask of
interests. Colocalization with ERM marker SCD was calculated using the same approach. The colocalization results for all 14 fields
of view were then calculated to obtain the average and standard deviation.

MITO APEX-seq extended analysis
For the MITO APEX-seq, we obtained strong enrichment (log2fold-change > 2.9) of the 13 MTmRNAs and 2 MT rRNAs in the targets
(i.e., labeled libraries) relative to unlabeled controls. These 15 genesmade up > 50%of reads in theMITOAPEX-seq labeled samples.
In addition to the 15 expected mitochondrial RNAs, we also recovered !400 transcripts that were moderately enriched (log2fold-

change > 0.75), some of which are knownmitochondrial pseudogenes. To rule out that this labeling was not because the biotin-phe-
noxy radical, generated during the labeling experiment, was escaping from the mitochondrial matrix we confirmed that OMM
APEX-seq enriched transcripts (> 1000-enriched transcripts) showed no enrichment (average log2fold-change !0) in the MITO
APEX-seq samples.While we do not believe these transcripts to be present in themitochondrial matrix (Mercer et al., 2011), attempts
to confirm the localization by FISH were not successful. We hypothesize two explanations for the observations: (1) Due to the large
perturbation introduced by APEX-seq labeling, the DESeq2 analysis does not perform properly; or (2) There is some small
background labeling by Cox4-APEX (i.e., MITO-APEX) as the protein makes it way from the cytosol, where it is translated, to themito-
chondrial matrix.

NES APEX-seq extended analysis
We did not find many transcripts highly enriched (log2fold-change > 0.75) by cytosol (NES) APEX-seq. We believe fewer transcripts
are recovered because APEX-seq enrichment is a proxy for RNA concentration rather than RNA amount. Thus, the cytosol, which
contains amajority of transcripts, recovers fewer highly-enriched transcripts relative to the unlabeled (i.e., whole-cell) controls. None-
theless we compared the transcripts enriched by cytosol APEX-seq (log2foldchange > 0, pFDR-adjusted < 0.05) and found them to have
higher enrichment in the cytosol fractionation fraction relative to transcripts with cytosol APEX-seq log2foldchange < 0.

KDEL APEX-seq extended analysis
For the KDEL construct, DESeq2 did not show any significantly enriched transcripts relative to unlabeled controls, when FDR
adjusted. If there are any significantly-enriched transcripts larger than 100 nt, they are few in number. We therefore used the
KDEL APEX-seq data as a ‘‘negative control’’ our 8-location integrated analysis by rejecting analysis strategies that yield a large
number of enriched KDEL transcripts, as such approaches likely have large false positives. We found that using a log2fold-change
between 0.6 and 0.9 was a sufficient compromise to obtain highly-specific gene lists without further loss of coverage (Figure S2M).

Proteomic analysis
For the proteomic analysis, we used subcellular protein localization data from Thul et al. (2017), using themain location for genes that
were imaged using validated and supported antibodies. We filtered the data to exclude duplicate protein localization entries from
multiple cell-lines. The majority of the proteins in that dataset are nucleoplasmic or cytosolic. We calculated an ‘‘enrichment’’ score
for each protein type in each location by carrying out a two-step normalization: (1) obtaining the enrichment of that protein type rela-
tive to all proteins, and (2) enrichment of that protein in each location relative to all locations.

Other analysis and data availability
Where appropriate, the following tests were employed (1) Student’s t test, (2) Mann-Whitney U test (Wilconox rank-sum test) (3)
Kolmogorov–Smirnov (KS) test, (4) Fischer’s exact test, (5) hypergeometric distribution test. All tests were carried out in R. All analysis
was carried out using R (most plots using ggplot2; Wickham, 2009), python andMicrosoft Excel. All custom code used in this work is
available upon request. All sequencing data are available through the Gene Expression Omnibus (GEO) under accession
GSE116008. Browser tracks can be found at: https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_
otherUserName=krparker&hgS_otherUserSessionName=APEXseq_all_stranded (stranded RNA-seq) and https://genome.ucsc.
edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=krparker&hgS_otherUserSessionName=APEXseq_all_
unstranded (unstranded RNA-seq).

DATA AND CODE AVAILABILITY

All data presented are available in the main text and supplementary materials. Browser tracks can be found at: https://genome.ucsc.
edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=krparker&hgS_otherUserSessionName=APEXseq_all_stranded
(stranded RNA-seq) and https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=krparker
&hgS_otherUserSessionName=APEXseq_all_unstranded (unstranded). The accession number for the raw sequencing data reported
in this paper is Gene Expression Omnibus (GEO): GSE116008.
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